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GUIDELINES

In the appendix we describe two sets of guidelines: guide-
lines for enabling and facilitating runtime verification and
field-based testing for ROS-based applications through devel-
opment are presented in Sect. 1 and guidelines for providing
quality assurance through runtime verification and field-
based testing for ROS-based applications are detailed in
Sect. 2.

1 GUIDELINES FOR DEVELOPMENT TO SUPPORT
RUNTIME VERIFICATION AND FIELD-BASED TESTING

In this section, we detail eight guidelines for facilitating the
verification of ROS-based applications through development
activities. Our approach to facilitate verification lies on
providing guidance to robotics software developers. The
group of Constraint Identification (CI) guidelines contains
three guidelines, CI1, CI2, and CI3, devoted to identifying
constraints of different nature, i.e., timing constraints, se-
curity and privacy constraints, and safety constraints. The
group of Code Design and Implementation (CD) guidelines
contains two guidelines, CD1 recommending to design ROS
nodes with single responsibility and CD2 guiding towards
ensuring global time monotonicity of events and states. The
last group contains four Instrumentation (I) guidelines. I1, I2,
and I3 focus on providing APIs for querying and updating
an internal lifecycle (I1), for logging and filtering (I2), and
for injecting faults in execution scenarios (I3). The last one
(I4) focuses on isolating components for testing.

1.1 CI1. Identify timing constraints
1.1.1 Context (WHEN)
Timing constraints, also known as “deadline” or “timing
requirements”, define temporal requirements that real-time
systems must adhere to [1]. These constraints can be catego-
rized as soft, firm, or hard, and they play a significant role
in determining whether the system respects timing concerns.
Since ROS-based systems often involve control nodes (such
as attitude control and state estimation [2]), which typically
have real-time requirements, identifying timing constraints
becomes even more critical.

1.1.2 Reason (WHY)
Identifying timing constraints is crucial for ROS-based
systems as these constraints define the system’s temporal
requirements. However, a recent study highlights the lack of
support for real-time constraints in the software engineering
research of ROS-based robotic systems, emphasizing the need
for more attention in this domain [3]. Initially conceived as
a means to handle difficult or costly-to-reproduce failures,
field testing has seen limited studies addressing real-time
issues, particularly in the realm of autonomous systems [4].

1.1.3 Suggestion (WHAT)
The development team should identify timing constraints
to ensure that no real-time requirements will be neglected
during the system testing. For instance, Autoware Perf (git:
azu-lab/ROS2-E2E-Evaluation) allows for the calculation
of response time and latency in ROS 2 applications; such
measurements may be used as hard constraints to testing

the system. Also, one may identify real-time constraints
with respect to synchronization between robots, sensor data
processing time, or fault detection and recovery.

1.1.4 Process (HOW)
Typical timing constraints that cross-cut in robotics domains
stand for response time [5], latency, synchronization time [6],
fault detection and recovery time, and power management
time. The means to specify such constraints vary from
informal to formal languages (we invite the interested reader
to check guidelines of the group property specification - SDB1
and SDB2. The developers team may use Autoware Perf [7]
to calculate response time and latency, for example.

1.1.5 Exemplars

Typical Timing Constraints. Real-time constraints may be
subject to the domain and the objectives of the runtime
assessment. We provide a comprehensive list of constraints
that may be interesting to address when considering testing
ROS-based systems. We use Autoware Perf [7] to illustrate
how to collect response time and latency with practical
examples.

• Response time is the period a ROS-based system
takes to react to one or more stimuli from the
environment. Specific to the ROS domain, Chaaban,
K. defines response time in ROS 2 as the “duration
from the release instant to the completion of the job
execution” [5]. To collect callback response time, Au-
toware Perf defines a function to get durations of
callback instances for a given callback objects (Auto-
ware Perf/../callback duration.ipynb �).

• Latency is the time a ROS-based system takes to react
to a stimulus from the test orchestrating apparatus.
Often, field tests include a centralized computer
orchestrating the test cases execution and information
collection, latency in such cases tends to be significant.
Autoware Perf illustrates how latency can be com-
puted with an example of a ROS 2 service, where they
send a goal to the robot and calculate the time for a
response (Autoware Perf/../e2elatency.ipynb �)).

• Synchronization time is the time taken for a ROS-
based system involving more than one robot to share
information.

• Sensor Data Processing time is the time taken to
transform raw sensorial input into information ready
to be used by reasoners or planners. Lewis et al.
conclude that it is difficult to predict how long
robots might have to wait between measurements
since quantifying data collection for real-time systems
needs to account for all the [metereological] sensors
and their respective response times[6]

• Fault Detection and Recovery time is the time taken
to prevent safety hazards. Robots, mainly operating in
safety-critical scenarios, often have safety mechanisms
to prevent hazards. Testing in the field, in general,
asks for safety assessment, thus incurring timing
overhead.

• Power Management time is the time taken to prevent
stop or graceful degradation due to a power outage.

https://github.com/azu-lab/ROS2-E2E-Evaluation
https://github.com/azu-lab/ROS2-E2E-Evaluation
https://github.com/azu-lab/ROS2-E2E-Evaluation/blob/main/autoware_perf_galactic/tracetools_analysis-galactic_add_tp/tracetools_analysis/analysis/callback_duration.ipynb
https://github.com/azu-lab/ROS2-E2E-Evaluation/blob/main/autoware_perf_galactic/tracetools_analysis-galactic_add_tp/tracetools_analysis/analysis/callback_duration.ipynb
https://github.com/azu-lab/ROS2-E2E-Evaluation/blob/main/autoware_perf_galactic/tracetools_analysis-galactic_add_tp/tracetools_analysis/analysis/galactic/e2elatency.ipynb
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Robots may rely on batteries or other embedded
power sources (such as solar panels). Power man-
agement may affect the testing conditions and be
considered when testing in the field. For example, to
start a recharging process in the middle of the mission
or to slow the velocity to recharge the batteries using
solar energy.

1.1.6 Strengths

Identifying timing constraints is a good practice to avoid
neglecting important real-time requirements during devel-
opment. It also helps isolating the tested behavior without
unintended outcomes due to real-time faults.

1.1.7 Weaknesses

Specifying timing constraints may be complex due to the
ROS nature presenting interconnected components and
dependencies. There is a lack of standardization or best
practices for specifying such properties. This may result in
an overhead when the application is not real-time critical.
Property specification guidelines (SDB1, SDB2) will further
investigate this issue.

1.2 CI2. Identify security and privacy constraints

1.2.1 Context (WHEN)

Runtime assessment introduces challenges to security and
privacy preservation. Modifying the source code to facilitate
testing may, however, open space for security and privacy
exploitation[4]. From the point-of-view of runtime verifica-
tion, security and privacy preservation revolves around spec-
ifying flavors of integrity, confidentiality, and availability[8].
For instance, Autonomous Driving Vehicles (ADVs) regula-
tors define policies given the territory they are being used in.
However, ADS introduction also requires public trust, w.r.t
security and safety [9]. In a scenario of runtime assessment,
be it field-based testing or runtime verification, security and
privacy exploits may be catastrophic. Yet, security is still
under-explored when it comes to architectural designs for
ROS-based applications [10].

1.2.2 Reason (WHY)

Security and Privacy are often under-explored in the design
of ROS-based applications. Threats to privacy and security
may be catastrophic and may be an unacceptable side-effect
of runtime assessment of such robotic applications.

1.2.3 Suggestion (WHAT)

The development team should identify security or privacy
vulnerabilities that may pose a risk to participants’ integrity,
confidentiality, and availability, that may be caused by the
testing and runtime verification activities. The ros-security
workgroup, in collaboration with Alias Robotics, maintains
SROS (git: ros2/sros2) for the analysis of such vulnerabilities
and fixes. In addition, Alias Robotics maintains a database of
vulnerabilities detected in ROS applications (git: aliasrobotic-
s/RVD) as a means of awareness.

1.2.4 Process (HOW)
Jeong S. Y. et al. [11] list a set of vulnerabilities typically en-
countered in ROS applications, including broken authentica-
tion, the rosbag replay attack, and service hijacking. Neither
preparing the code for runtime assessment nor the runtime
assessment procedure itself should enable or facilitate the
exploitation of such vulnerabilities. The developers must be
aware of such vulnerabilities and specify constraints specific
to the domain of the application, enforcing or informing
the testing of the danger. From one side, the ros-security
working group works on mitigating security vulnerabilities
provided by design from ROS [12]. From another stance,
other approaches focus on confidentiality, integrity, and
availability while providing means to specify control access
policies and generate firewall rules based on the fundamental
elements of ROS [13], [14].

1.2.5 Exemplars

FAST-DDS is the current technology used in ROS 21. FAST-
DDS enables features such as authentication of domain
participants using a Certificate Authority (CA), access control
to constrain specific operations, authenticated encryption
following the Authentication Encryption Standard (AES), log-
ging security events, and data tagging by enabling security
labels to data. In addition, the ros-security working group,
in tandem with Alias Robotics, works on SROS, a tool for
securing ROS within the DevOps model (ros2/sros �) [12].

Hu et al. specify security properties of ROS-based sys-
tems [13]. The specified security properties follow the defini-
tion of a composite of attributes on confidentiality, integrity,
and availability, according to Avizienis [15]. Hu et al. define
the properties following two scenarios: (i) attackers get access
to a ROS node and freely allocate memory until reaching an
out-of-memory state, (ii) topics or services are hijacked, and
the information flowing between ROS nodes is changed
to provoke a failure. In such scenarios, the developer’s
team should specify constraints to the runtime assessment
procedure placing a barrier to facilitating the control of ROS
nodes in such a way that enables free memory allocation and
should specify conditions to allow ROS topics and services
remapping without any certification, for instance. The testing
team may want to assess whether their runtime assessment
will open up exploit opportunities given a set of constraints.

ROSRV, a runtime verification framework for safety and
security properties of ROS-based applications, provides
a specification language for access control policies and
enforces them at runtime [14]. Such access control policies
may prevent the system from exploiting security breaches,
such as enabling the control of safety-critical nodes to the
application. More specifically, ROSRV provides access control
specifications based on a user-provided specification of
access policies using text file inputs. The policies are defined
under five categories: groups, nodes, publishers, subscribers,
and commands. Nodes represent node names and machine
identities, publishers/subscribers define topic names and
node identity associated, and commands define the access
policy, e.g., full access, localhost (ROSRV�).

1. Details on FAST-DDS https://fast-
dds.docs.eprosima.com/en/latest/fastdds/security/security.html

https://github.com/ros2/sros2
https://github.com/cansuerdogan/ROSRV/blob/master/docs/Usage.md
https://fast-dds.docs.eprosima.com/en/latest/fastdds/security/security.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/security/security.html
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1.2.6 Strengths

Identifying security and privacy constraints can help protect
participants and resources during runtime assessment. This
guideline encourages developers to consider security and
privacy early on in the design process, rather than as
an afterthought. It encourages the development of more
secure and trustworthy ROS-based applications and runtime
assessment of ROS-based applications, which can improve
public trust and acceptance.

1.2.7 Weaknesses

The guideline, intentionally, does not provide specific details
on how to implement security and privacy constraints,
leaving it up to the developers to decide which constraints
are necessary and how to enforce them, since this is
domain-dependent. It may be challenging to understand
the various security vulnerabilities associated with ROS-
based applications, making it difficult to specify appropriate
security and privacy constraints. The guideline may require
additional time and resources to implement security and
privacy constraints, which may delay the development
process. Systems with lower technology readiness level, such
as academic prototypes, may not need a thorough security
assessment, making this guideline irrelevant in those cases.

1.3 CI3. Identify safety constraints

1.3.1 Context (WHEN)

The assessment of safety constraints is essential for both
runtime verification and field-based testing. When stimu-
lating robotic systems with extreme scenarios, for instance
in robustness testing [16], it’s crucial to consider potential
threats to personnel and the properties being tested. These
threats limit the ability to conduct online assessments for
safety-critical applications, particularly in robotics. To en-
sure the benefits of field-based testing [4], it’s important
to carefully address and compensate for the introduced
safety risks. Non-negotiable safety constraints should be
maintained throughout the confidence-gathering process, as
they determine the readiness and release of technology, both
in industry and everyday use [17].

1.3.2 Reason (WHY)

Safety hazards may unable runtime verification or field-
based testing since corner cases may pose threats to testing
personnel or damage property during runtime assessment.

1.3.3 Suggestion (WHAT)

The developers should identify the boundaries of a safe
behavior (i.e., safety constraints) to enable the use of mech-
anisms for preventing the robot from hurting operators or
property during testing and verification activities. For exam-
ple, the developers can identify constraints like speed limit,
distance to obstacle, or conditions for emergency stop, which
can be used by monitoring tools like ROSMonitoring (git:
autonomy-and-verification-uol/ROSMonitoring), or used by
an independent safety controller in a separate ROS node to
prevent the robot from falling from a cliff, e.g., the Kobuki
robot (git: yujinrobot/kobuki).

1.3.4 Process (HOW)
Safety constraints may be specified in using many spec-
ification languages. The known toy example in mobile
robotics, Kobuki, specifies safety properties in a separate
ROS node using the switch-case in Python; Adam et al.[18]
proposes rule-based specifications in the format of boolean
equations that predicate over messages over topics; Stadler
et al. [19], uses an event processing language offering query-
based operations; Finally, Huang et. al [14] enables the
specification of temporal properties leveraging monitoring-
oriented programming (MOP).

1.3.5 Exemplars

Typical safety constraints:

• emergency stop [18]
• speed monitoring (e.g., v < 0.2m/s) [18], and

movement speed limit (e.g., speed limit 0.35m/s) [19]
• timing monitoring (e.g., t > 10) [18]
• obstacle avoidance (e.g., maintain at least 35cm dis-

tance from object) [19]
• joint effort (e.g., max joint effort�) [19]

Technologies:
The Kobuki robot implements a safety controller (�).

The kobuki’s safety controller specifies, using Python at
code-level, a state machine ensuring that the robot stops
whenever it is close to a cliff, the bumper sensor was pressed,
or at least one of the wheels dropped (or was raised in the
air). The Kobuki’s safety controller is a separate ROS node
collecting bumper, cliff and wheel events. A sequence of
events may trigger an alert or issues velocity commands to
deviate Kobuki from the threat.

Adam S. et al. [18] defines a rule-based language for
enforcing safety constraints on existing ROS-based software.
Their approaches uses a simplified metamodel to describe
the ROS software enabling static analysis as well as invariant
monitoring. The authors explain that separating the specifi-
cation of safety issues from functionality facilitates attesting
that the robotic behavior conforms to safety requirements.
Their rule-based approach enables the specification of actions
that preclude rules encoded in boolean equations (e.g.
cmd vel left > 0.02m/s) over messages in topics.

Stadler et al., [19] uses the Esper Constraint Engine to
check for violations of the safety constraints. Such constraints
are specified using the EPL notation. Event Processing
Language (EPL) is a SQL-standard language with extensions,
offering SELECT, FROM, WHERE, GROUP BY, HAVING
and ORDER BY clauses. For instance, they specify that an
event such as JointEffortEvent (AEvent) will not exceed
a maximum of 5.0 in an ESL constraint specification (i.e.,
max joint effort�).

Listing 1: Safety constraint in EPL notation.

1 select * from AEvent(MaxValue > 5.0)

Huang et al.’s [14] monitoring infrastructure enables the
use of any logic plugins of Monitoring-Oriented Program-
ming, thus enabling specification of temporal properties
over events, such as regular expressions, linear temporal

https://github.com/MStadler-Organization/ROMoSu/blob/main/services/constraint_engines/src/main/resources/constraints/c1_mx_joint_effort.cst
https://github.com/yujinrobot/kobuki/blob/23748ed3dfb082831ca8eaaef1a0b08588dbcb65/kobuki_safety_controller/include/kobuki_safety_controller/safety_controller.hpp
https://github.com/MStadler-Organization/ROMoSu/blob/main/services/constraint_engines/src/main/resources/constraints/c1_mx_joint_effort.cst
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logics, and context-free grammars. For instance, one of their
monitors predicates on the position of the turret installed in
the autonomous vehicle, i.e., “the gun should not exceed a
maximum joint angular position otherwise the turret targets
itself.”.

1.3.6 Strengths
By identifying safety constraints, developers can demonstrate
compliance with these requirements, providing assurance to
stakeholders that appropriate safety measures are in place.
Early detection and response to safety violations, such as
exceeding speed limits or approaching obstacles too closely.
This early detection and response can help prevent accidents
and minimize potential damage.

1.3.7 Weaknesses
Identification of safety hazards involves understanding the
system’s behavior, identifying potential risks, and formu-
lating appropriate constraints. This process can be time-
consuming and complex, especially for large and intricate
systems, potentially increasing development costs.

1.4 CD1. Developers should strive for ROS nodes with
single responsibility
1.4.1 Context (WHEN)
ROS fosters a rich toolkit for designing modular robotics
software [20]. Developers face design decisions of how to im-
plement a given set of requirements using ROS fundamental
concepts, i.e., nodes, topics, services, packages [10]. In order
to facilitate runtime assessment, the system’s computational
units should be designed such that they can be safely exposed
to trials with warrantied no side effects on the running
system [4]. In addition, it should reduce the cost of observing
and controlling modules, or, in robotics, atomic actions (or
skills) [21].

1.4.2 Reason (WHY)
Mapping functional units to ROS nodes enables fine-grained
observation and control of the robotic behavior.

1.4.3 Suggestion (WHAT)
To facilitate assessment during the robot operation and
enable fine-grained observation and control, the develop-
ers should implement ROS nodes following the single
responsibility principle (i.e., each node should implement
a single feature and different nodes can be combined to
perform a complex task). For example, developers should
implement independent nodes for path planning and reactive
manoeuvring, or independent nodes for defining primitive
skills like grasping an object or simultaneous localization
and mapping (SLAM).

1.4.4 Process (HOW)
We divide the means to designing ROS nodes with single
responsibility in two: hierarchical design, and skill-based
design. In hierarchical design, ROS nodes are organized
based on the goals they achieve, with each node responsible
for a specific task or functionality[22], [23]. This approach
allows for clear separation of responsibilities and easier

maintenance. In skill-based design, ROS nodes are organized
based on the skills they possess, with each node responsible
for a specific capability or behavior[24], [25], [26]. This
approach enables more flexibility and reusability of nodes,
as they can be combined to perform various tasks.

1.4.5 Exemplars

Hierarchical design. Hartswell et al. define components as
building blocks that may be hierarchically composed to fulfill
the system’s functional requirements [22]. Their running
example implements ROS nodes with complementary but
distinct, and independent, functionalities. One node resolves
path planning in a deliberative control setting, and the other
is responsible for the low-level PID controller reactively
manoeuvring the robot. In the healthcare domain, the Body
Sensor Network (lesunb/bsn�) defines ROS nodes after
concrete tasks that, composed, should fulfil the system’s goal.
Tasks such as collecting SPO2 data, collecting heartbeat data,
fuse data, or identifying emergency [23]. For instance, the
collect SPO2 data task implements an independent node for
collecting, filtering, and transferring data �. Given that each
sub-task (i.e., collecting, filtering, and transferring) is strictly
dependent on each other, yet, should not depend in the envi-
ronment and together form an atomic behavior. Separating
the sub-tasks in different nodes may render incomplete test
cases that are hard to read and often meaningless.
Skill-based design typically defines skills as fundamental
software building blocks operating a modification on the
world stage. In such approaches, skills should be modular
and reusable. Although ROS nodes provide a natural means
for modular design, it is not common to map skills to nodes
in current skill-based designs. For instance, SkiROS [24]
implements 3 nodes: World Model Manager, Task Manager,
Skill Manager (skiros2 skill�). In addition, HRMS [25] does
not map skills to nodes. It builds skills that under the Behav-
ior Trees notation may reuse existing nodes (hmrs/skills�).
Lack of standard mapping from skills to actual computation
impairs the verification of skill-based approaches at skill level.
Towards verifiable ROS-based applications, a promising
architecture, namely RobMoSys2, suggests separation of
concerns between different levels such as Mission, Task Plot,
Skill, Service, Function, whereas Skill concerns to config-
uration, e.g., grasp object with constraint, and functions
concern to computation, e.g. inverse kinematics solver. In
this direction, Albore A. et al. [26] promote ROS2 code
generation whilst mapping skillsets to ROS nodes with a
single responsibility.

1.4.6 Strengths
Modularity enables fine-grained observation of system re-
quirements. In addition, it caters to clear interfaces for
runtime inspection and allows for mocking and substituting
behavior for assurance scenarios.

1.4.7 Weaknesses
Feedback loops, however, may impair testing, i.e., modularity
turns out to be costly for systems with feedback loops,
whereas the system’s behavior is context-dependent [27].

2. https://robmosys.eu/wiki

https://github.com/lesunb/bsn
https://github.com/lesunb/bsn/blob/master/src/sa-bsn/target_system/components/component/src/g3t1_1/G3T1_1.cpp
https://github.com/RVMI/skiros2/blob/de00abafffe78c8da6ba35e8259d6ad075ec72b6/skiros2_skill/src/skiros2_skill/core/skill.py#L622
https://github.com/Gastd/py_trees_ros_behaviors/tree/devel/py_trees_ros_behaviors
https://robmosys.eu/wiki/general_principles:separation_of_levels_and_separation_of_concerns
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1.5 CD2. Ensure global time monotonicity of events and
states
1.5.1 Context (WHEN)
As distributed systems, such as ROS-based applications,
rely on time scheduling for their operation, ensuring time
monotonicity is crucial to guarantee the replicability and
reproducibility of test cases. Non-determinism in the schedul-
ing of events can lead to unexpected behavior, compromising
the reliability of tests and hindering their reproduction. To
address this issue, developers must ensure that the testing
team is aware of the expected behavior given the occurrence
of events, which requires establishing a clear execution order
and priority. For instance, by synchronizing different types
of data at package or subscription-level [10].

1.5.2 Reason (WHY)
Ensuring global time monotonicity of events and states
permits to address the potential non-determinism in the
scheduling of events in ROS-based applications.

1.5.3 Suggestion (WHAT)
The development team should ensure global time monotonic-
ity of events and states to avoid potential non-determinism
in scheduling. Such non-determinism is a threat to getting
confidence in the system since repeated tests under the same
conditions may turn into different results. A technique that
can be used to ensure determinism is annotating messages
and requests with timestamps and implementing a logical
time synchronizer, similar to what is done by MAVROS (git:
mavlink/mavros). Also, the Time Synchronizer message filter
(wiki: message filters) may be used for this purpose.

1.5.4 Process (HOW)
Events are said to be monotonic in time whenever for a set of
events scheduled over a global clock, two consecutive events
are successive. First the developers should understand how
events are scheduled and the limitations of the application
towards predictable ordering of events [5], [28]. Then, the
developers should analyze and guarantee that all processes
are executed in the expected order and will lead to pre-
dictable behavior. Developers may accomplish such analysis
and guarantee provision with external tools, for instance,
formal methods [29], [30] or by embedding timestamps (e.g.,
SteadyTime) and filtering messages to guarantee ordered
events (e.g., MAVROS).

1.5.5 Exemplars

Understand the scheduling of ROS events and states.
Chaaban K. [5] explains that ROS 2 schedules callbacks
using a non-preemptive algorithm that consumes messages
depending on their type. Unlike typical real-time priority-
based scheduling algorithms, ROS 2 does not execute
callbacks in their activation instances. Thus non-time-based
messages are scheduled in a round-robin fashion. To
this extent, ROS 2 (which claims to address real-time)
presents limitations when asked for well-defined execution
orders and priority inversion. Choi et al. [28] promotes
rtenlab/ros2-picas �, a new scheduling algorithm that adds
priority awareness for scheduling in ROS2.

Analyse starvation-freedom to support monotonicity. Blaß
T. et al. [29] proposes a response-time analysis exploiting
the round-robin properties. The authors present an analysis
of starvation-freedom using three techniques: modeling
processor demand as execution-time curves instead of scalar
worst-case execution times (WCETs), accounting for the
effects of quiet times and busy windows in the activation
curve derivation, and exploiting the round-robin behavior
of the ROS callback scheduler. Starvation freedom indicates
monotonicity and ordering of events, it helps the developers
to understand real-time behavior and set expectations.
Halder R. et. al [30] use model checking (e.g., UPPAAL [31])
to analyze real-time behavior in ROS-based applications.
Under the claim that ROS non-deterministically empties the
communication queues, the authors focus on modeling the
message-passing behavior of ROS and verifying whether
the queue overflows. Since overflow here means that some
process is starving, thus the application is not monotonic
in time. The authors offer the models in timed automata
and TCTL (Temporal Computational Tree Logic) properties
designed to ensure real-time for the safety controller of the
Kobuki3 exemplar.
Annotating messages with timestamps and synchronization
to guarantee ordering. The SteadyTime4 class in
ROS represents a monotonic clock, functioning
independently of physical time and with steady tick
times. MAVROS (mavlink/mavros �), a library broadly
used in ArduPilot for flight control, approaches time
monotonicity guarantees by implementing a logical time
synchronizer. The synchronizer ensures that the time
passing in MAVROS is aligned with the time on ArduPilot’s
side, avoiding drifts that could lead the application to
fail. More importantly, the time synchronizer uses a
particular type of message that embeds timestamps for
clock synchronization for updating ArduPilot about its
time status (TimesyncStatus.msg �). Messages such as this
can be used for synchronizing the occurrence of events
in the system. The Time Synchronizer message filter5, for
example, reads timestamps from the header of messages
and synchronize message by outputting channels to a single
callback.

1.5.6 Strengths
Tests reliability increases by enabling the prediction of the
expected behavior of a system under scrutiny. In addition,
time monotonicity guarantees can facilitate reproducing test
results by establishing a clear execution order and priority.
Finally, developers can reduce the time taken and resources
used to verify the system behavior by implementing time
synchronization and annotation messages with timestamps.

1.5.7 Weaknesses
Implementing time synchronization to ensure time mono-
tonicity may require additional development effort, adding
complexity to the system. Also, time synchronization may

3. http://wiki.ros.org/kobuki
4. https://design.ros2.org/articles/clock and time.html
5. https://wiki.ros.org/message filters

https://github.com/rtenlab/ros2-picas
https://github.com/mavlink/mavros
https://github.com/mavlink/mavros/blob/ros2/mavros_msgs/msg/TimesyncStatus.msg
http://wiki.ros.org/kobuki
https://design.ros2.org/articles/clock_and_time.html
http://wiki.ros.org/message_filters
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add performance overhead due to additional operations
execution. Achieving real-time behavior depends on the
(interaction with the) operating system.

1.6 I1. Provide an API for querying and updating internal
lifecycle

1.6.1 Context (WHEN)
Autonomous systems, such as robotic applications, often
require stateful compute nodes [27]. However, the internal
states within ROS nodes are typically hidden and not easily
accessible, limiting the ability to diagnose and understand
unexpected behavior. Exposing these hidden states is crucial
for providing granular information on the system’s behavior,
rendering increased observability. Furthermore, managing
these hidden states allows for actions such as starting,
stopping, and rolling back to a specific state, in other words,
increased controllability. The running system should be both
observable and controllable [8], [4], as these states can be
application-specific and not standard [10].

1.6.2 Reason (WHY)
The use of ROS nodes with lifecycle management can
facilitate testing by providing a structured way to manage
the state of the nodes and the interactions between them.
This structure helps to ensure that nodes are in the right
state for testing and that the interactions between nodes
are predictable. Furthermore, it helps mitigate dangling
references to nodes that are no longer in use.

1.6.3 Suggestion (WHAT)
To facilitate field-based testing, the development team should
properly manage the ROS nodes’ lifecycle and prepare APIs
for querying and updating the internal nodes’ life-cycle,
e.g., to ensure that nodes are in the right state for testing.
For example, developers can use modes (git: ros2/demos)
for lifecycle management. In the context of Micro-ROS (git:
micro-ROS), developers can define custom lifecycle modes
(git: micro-ROS/system modes) like sleep, power saving,
starting, processing, and ending modes, and use separate
extra nodes for mode monitoring and mode update.

1.6.4 Process (HOW)
The team should define a custom life-cycle for the ROS-based
application, for instance, the life-cycle phases could be: start-
ing, processing, and ending [32], using system modes from
Micro-ROS[33]. Moreover, the processing phase can further
be divided into waiting and executing steps and application-
specific states, and the transitions between phases should
be well-defined by events. The development team should
then prepare an API for managing the life-cycle of nodes [34],
which can be queried or updated through ROS interfaces,
such as the client-server interface. The API should allow for
the representation of all nodes in the application, which can
be queried or updated using the interface.

1.6.5 Exemplars

Customized life-cycle Conte G. et al. [32] define a custom
life-cycle in ROS for their autonomous surface vehicle. The

life cycle has three phases: starting, processing, and ending.
The processing phase can be subdivided into two other:
waiting and executing. Events define the transition between
phases. The authors claim that such organization helped
in the field testing when they had to explicitly shut down
a (ROS) agent, shut down the agency infrastructure, or
detect a failure in the ROS infrastructure. ROS2 provides
the concept of life-cycle by design. Developers may
inherit from the LifecycleNode from rclcpp to enable the
standardized life-cycle management from ROS2. Belsare
K. et al. [33], namely Micro-ROS �, extends the ROS2
life-cycle to the domain of embedded systems. Their
extension enables the specification of (sub-)systems or
systems-of-systems in a hierarchical finite-state machine
style. It creates the concept of modes within the active
state. System modes (micro-ROS/system modes �) are
customizable and can be used to track sleep modes and
power saving [34]. The authors present an example (micro-
ROS/system modes/system modes examples �) of how
can add weak and strong as customized modes for an active
manipulator.

Listing 2: YAML definition of custom system modes weak
and strong for torque control.

1 manipulator:
2 ros__parameters:
3 type: node
4 modes:
5 __DEFAULT__:
6 ros__parameters:
7 max_torque: 0.1
8 WEAK:
9 ros__parameters:

10 max_torque: 0.1
11 STRONG:
12 ros__parameters:
13 max_torque: 0.2

Life-cycle management is the ability to query and update
the nodes’ life-cycle. rclc/rclc lifecycle � the library used
by ROS2 provides the functionalities to managing nodes
using the ROS2 stack [35]. rclc lifecycle implements a ROS
node that represents all other ROS nodes within the appli-
cation. The nodes encode finite state machines that can be
queried or updated using the ROS service interface. The
lifecycle talker example (ros2/demos/lifecycle �) illustrates
how the get state and change state services query or update
the life-cycle. The ROS2 implementation, however, does not
support hierarchical states. To mitigate the problem, Micro-
ROS � defines two extra nodes, the mode monitor node and
the mode manager node [34]. The mode monitor infers the
state (i.e., mode) of underlying nodes; The mode manager
may use the (inferred) state to update modes of sub-systems,
modes of nodes, and node parameters.

1.6.6 Strengths

Following this guideline results in reliable and repeatable
runtime assessment since the life-cycle manager can ensure
that the application is in the desired state. Moreover, it is
easier to setup and teardown testing harnesses since it would
be possible to understand the current state of the application,

https://github.com/micro-ROS
https://github.com/micro-ROS/system_modes
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/src/manipulator.cpp
https://github.com/micro-ROS/system_modes/blob/master/system_modes_examples/src/manipulator.cpp
https://github.com/ros2/rclc/tree/master/rclc_lifecycle
https://github.com/ros2/demos/blob/foxy/lifecycle/src/lifecycle_service_client.cpp
https://github.com/micro-ROS
https://github.com/micro-ROS
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avoiding interruptions in critical phases, and planning for
start and stop in the appropriate time.

1.6.7 Weaknesses

As a drawback, there will be overhead associated with meta-
data for life-cycle management, and increasing the number of
lines of code may impact the system’s latency. Also, custom
states may ask for larger models representing the possible
life-cycle and management, incurring in cost of modeling
and maintenance.

1.7 I2. Provide an API for logging and filtering

1.7.1 Context (WHEN)

Dynamically gathering information is a fundamental step
for gaining confidence in ROS-based systems. Logging (and
playback) is, in fact, one of the most used techniques for
testing ROS-based systems [16]. Often named monitoring [8],
or logging [4], the process of recording textual or numerical
information about events of interest may be a valuable input
to the testing team. With such data in hand, the testing team
will process the data and transform it into useful information
to challenge their hypotheses about how the system should
work.

1.7.2 Reason (WHY)

Logging important events depends on instrumenting the
code (with ‘hooks’) that enables the information retrieval
activity. It is unrealistic to assume that the testing team will
have access to the source code or that the testing team knows
what events to log or how to do so.

1.7.3 Suggestion (WHAT)

The development team should provide an API for logging
and filtering data to enable access to valuable runtime
data which should be used for both runtime verification
and field-based testing. The standard approach to logging
and filtering is rosbag (wiki: rosbag). Though, in addition,
AWS CloudWatch (git: aws-robotics/cloudwatchlogs-ros2)
collects data from the rosout topic and provides a filter for
eliminating noise from the logged events. Another example
is the Robotic Black Box (git: ropod-project/black-box) which
allows for listening to data traffic from distinct sources and
logging the messages using MongoDB.

1.7.4 Process (HOW)

We divide, according to Falcone et al. [8], techniques for
gathering information in two: inline, and outline. Inline
logging and filtering stand for techniques that ask for actually
inserting snippets of code in the system under scrutiny as
a means to provide an API for logging, e.g., [36]. Outline
logging and filtering stands for techniques that enable an
external means to gather and filter information that does
not require changing the source code, e.g., [37], [38], [39].
Developers may choose one or another given their domain
of application.

1.7.5 Exemplars

Inline logging and filtering. ROS, by standard, contains a
system-wide string logging mechanism, namely ROS logging
(http://wiki.ros/logging). ROS logging works with a set of
macros defined for instrumenting the nodes with information
hooks. In the background, the macros send messages with
the information to be logged through a standard topic
called rosout. On the other side of the topic, an extra node,
within the roscore package, persists the data in a textual
format (ros/../rosout �). Developers can use the macros
to log information that might be used for testing in a
later stage, given the application-specific requirements. For
instance, the Amazon AWS service for robotics provides AWS
CloudWatch Logs (aws-robotics/cloudwatchlogs-ros2 �)
interfaces directly with rosout to monitor applications using
the standard ROS logging interface. In addition, the standard
library provides logging macros with embedded filtering
capabilities, which enables eliminating noise from the logged
events and can render a useful tool for testers. ROS Res-
cue [36] is another example of inline logging. The tool aims
at solving the problem of ROSMaster as a single point of
failure. The authors approach check-pointing and restoring
state by logging changes in the metadata stored in the master
node. Such metadata contains URIs from various nodes,
port numbers, published or subscribed topics, services, and
parameters from the parameter server. Kaveti P. et al. create
an API for the ROS master node (master api.py �) using
the official logging library from Python6 to persist metadata
in YAML format. Their technique opens space for further
inspection of ROS applications without access to the source
code.
Outline logging and filtering. ROSMonitoring [37] employs
monitors to persist events in textual format. The monitors
contain filtering capabilities to eliminate entries that are
inconsistent with the specification (requires an oracle). In
this context, the launch files to configure ROSMonitoring can
be seen as an API for logging and filtering (ROSMonitor-
ing/../online config.yaml �). Monitors in ROSMonitoring
are nodes, thus, the API is a set of known topics and
message formats. The tester, in that case, only needs to
specify what topics ROSMonitoring will listen to and the
type of message to be recorded. The logging and filtering
happen within a separate service. On a similar stance,
and inspired by aircraft black box (and software black
box [38]), Mitrevski, et al. [39] proposes the concept of
Robotic Black Box (ropod-project/black-box �). The black
box operates as an isolated component responsible for
listening to data traffic from distinct sources and logging
in an easily retrievable medium. Similarly to ROSMoni-
toring, Mitrevski’s black box approach to logging (ropod-
project/black-box/../logger main.* �) inspects topics and
message types that are configured in advance. Different from
ROSMonitoring, Robotic Black Box offers logging not only
in textual format but also in a MongoDB database, which is
essentially useful for data processing, filtering, and retrieval.
Robotic Black Box stands out when it comes to its filtering
and retrieval capabilities. The approach builds a customized
query interface over the MongoDB database using names

6. https://docs.python.org/3/howto/logging.html

http://wiki.ros.org/roscpp/Overview/Logging
https://github.com/ros/ros_comm/blob/noetic-devel/clients/rospy/src/rospy/impl/rosout.py
https://github.com/aws-robotics/cloudwatchlogs-ros2
https://github.com/PushyamiKaveti/fault-tolerant-ros-master/blob/master/src/ros_comm/rosmaster/src/rosmaster/master_api.py
https://github.com/autonomy-and-verification-uol/ROSMonitoring/blob/master/generator/online_config.yaml
https://github.com/autonomy-and-verification-uol/ROSMonitoring/blob/master/generator/online_config.yaml
https://github.com/ropod-project/black-box
https://github.com/ropod-project/black-box/blob/master/pybb/logger_main.py
https://github.com/ropod-project/black-box/blob/master/pybb/logger_main.py
https://docs.python.org/3/howto/logging.html
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of collections, timestamps and metadata to filter the results
(black box tools/db utils.py �).

1.7.6 Strengths
An API for retrieval and filtering facilitates access to valuable
information resulting in effortless observability of inner states
and events.

1.7.7 Weaknesses
Overuse of logging may result in performance issues. Incor-
rectly implemented logging and filtering capabilities may
lead to noise in the data, impacting the reliability of the tests.
Finally, insufficient logging may result in an incomplete
assessment of the system behavior and might generate false
positives.

1.8 I3. Provide an API for injecting faults in execution
scenarios
1.8.1 Context (WHEN)
Stimulating ROS-based systems with unexpected scenarios
is a cornerstone of gathering confidence in the system’s ro-
bustness [16], [27]. Such unexpected scenarios either emerge
from faults in the robot’s control logic or unforeseen inputs
unfolding from complex interactions with the environment.
Therefore, preparing the ROS-based systems to systematically
explore unintended behavior and complex environmental
interactions becomes important in runtime verification [8]
and field-based testing [4] for robust ROS-based applications.
Fault injection and error emulation are the two fundamen-
tal approaches to systematically stimulating a computing
system with unexpected scenarios for confidence-gathering
purposes [40].

1.8.2 Reason (WHY)
Providing an API for stimulating unexpected scenarios for
testing the robustness of the target system can help address
challenges in finding both fault and error sets representative
of real software faults.

1.8.3 Suggestion (WHAT)
To enable runtime verification and field-based testing, devel-
opers should provide an API for injecting faults or emulating
runtime errors. For instance, to emulate the consequences of
software faults, ros1-fuzzer (git: aliasrobotics/ros1 fuzzer)
provides an API for ROS messages fuzzing. As another
example, to imitate the mistakes of programmers, IM-FIT
(git: cembglm/imfit) is a tool for injecting faults in ROS
applications.

1.8.4 Process (HOW)
There are two identified means to enabling unexpected
scenarios injection in ROS: providing an API fault injection
and or an API for error emulation. The two methods
differ concerning their assumptions. Fault injection is about
changing the source code and requires knowledge about the
system’s internal structure (e.g., imfit [41]). Error emulation is
about changing the system during execution and should not
require knowledge about the system itself (e.g., ros1 fuzzer,
and ros2 fuzzer). Thus, from the developer’s point of view,
enabling faulty scenarios through an API requires deciding
whether fault injection or error emulation is the most suitable
based on the system’s requirements.

1.8.5 Exemplars

Fault injection. Fault injection imitates the mistakes of
programmers by changing the system under scrutiny’s source
code [42]. Developers can embed an interface for enabling
source code modifications to inject faults in the ROS-based
system. For instance, IM-FIT(cembglm/imfit �) is a tool
tailored to mutation-based software fault injection for ROS
applications [41]. Listing 3 describes a subset of the IM-
FIT ROS mutations library which offering three operations
(delete, change, and external) on defined ROS primitives,
such as publishers, subscribers, timers, global variables,
namespaces, service clients. Moreover, IM-FIT offers an
interface to decide when, where and how the mutators will
inflict faults in the source code. Embedding IM-FIT in the
project as an API to fault injection facilitates robustness
testing for the QA team.

Listing 3: Snippet of the IM-FIT’s JSON library containing
mutations for fault injection in ROS-based systems.

1 {"all_faults": [
2 {"fault": {
3 "Fault_Name": "Subscriber Delete",
4 "Target_to_Change": "rospy.Subscriber",
5 "Changed": " ",
6 "Explanation": "Subscriber deletes"
7 }},
8 ...
9 {"fault": {

10 "Fault_Name": "Periodic Timer Change",
11 "Target_to_Change": "rospy.Timer",
12 "Changed": "rospy.Time",
13 "Explanation": "Periodic timer is wrong"
14 }},
15 ...
16 {"fault": {
17 "Fault_Name": "External ROS Message",
18 "Target_to_Change": "[rospy.Message]{13}",
19 "Changed": "rospy.Message rospy.Message",
20 "Explanation": "External ROS Message""
21 }}
22 ]}

API for error emulation. Error injection attempts to emulate
the consequences of software faults by manipulating the
runtime states/events of the system under scrutiny [43].
Developers can embed an interface within the ROS-based
system enabling a set of operations to disturb it during run-
time. For instance, ros1-fuzzer (aliasrobotics/ros1 fuzzer �)
provides an API for ROS messages fuzzing. The API requests
the topic’s name, the message type and datatype strategies
to fuzzing the message’s content. Although the datatype and
constraints are hard coded in the API, defining the topic
name and message type are done in the command line. For
example, $ ros_fuzzer -t /rosout -m rosgraph_msgs/Log,
in which the user is fuzzing a Log message sent to the /rosout
topic. The authors evolved ros1-fuzzer to suit ROS 2 applica-
tions, resulting in ros2-fuzzer (aliasrobotics/ros2 fuzzer �).
ros2-fuzzer extends the interface enabling service-level
fuzzing, not only message fuzzing as was ros1-fuzzer. The ad-
dition affected the API asking for an extra argument (service

or message) in the command, e.g., $ ros2_fuzzer.py

service example_interfaces/AddTwoInts add_two_ints.

https://github.com/ropod-project/black-box-tools/blob/master/black_box_tools/db_utils.py
https://github.com/cembglm/imfit
https://github.com/aliasrobotics/ros1_fuzzer
https://github.com/aliasrobotics/ros2_fuzzer
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1.8.6 Strengths
Providing an API for fault injection and error emulation with
a representative set of possible operations enables balck-box
robustness testing. It also may save time for the testing team,
which can build scenarios on top of the provided interface.

1.8.7 Weaknesses
Embedding an interface for enabling source code modifica-
tions or runtime disturbances can be time-consuming for
developers whenever there are no third-party tools that
provide the required operations.

1.9 I4. Isolate components for testing
1.9.1 Context (WHEN)
Robotics applications require to be safely field tested with
warrantied no side effects on the running system or the envi-
ronment, including personnel. To this end, it is fundamental
to pursue isolation of the components being tested.

Man-in-the-Middle (MITM) can provide isolation of
computing nodes for testing, which, as stated by Bertolino
et al [4], can guarantee that the execution of the field tests
does not interfere with the operation of the tested system.
In addition, MITM nodes promotes the ability to drop or
modifying internal signals improving the controllability of
events and states, which as described by [8], refers to the
degree to which a certain specification can be enforced on
the system.

1.9.2 Reason (WHY)
The ROS ecosystem does not provide a native mechanism for
node isolation. The MITM node strategy can be a powerful
and flexible design pattern to isolate computing nodes in
ROS-based systems. It allows for increased visibility into the
system’s operation, more flexible communication between
nodes, and improved reliability and security.

1.9.3 Suggestion (WHAT)
Isolation of components is an important feature to enable
field-based testing (by following the “let it crash” philosophy
introduced by Netflix web:chaos-monkey) while avoiding the
crash of the system. Isolation permits catching immediately
the component that is crashing and executing countermea-
sures to keep the system up. Examples of solutions for
isolation are: (i) the use of proxy nodes of ROSRV (git: can-
suerdogan/ROSRV), or (ii) introducing intermediary nodes
between original nodes by exploiting the topic remapping
functionality (wiki: remap) of ROSMonitoring (git: autonomy-
and-verification-uol/ROSMonitoring), which enables swap-
ping topic names just before running the application.

1.9.4 Process (HOW)
In ROS, the man-in-the-middle (MITM) strategy consists of
introducing intermediary ROS nodes between components,
in this context the term ‘components’ stands for one or
more ROS nodes presenting unique functionality and well-
defined interfaces. Such intermediary nodes may react by
blocking, dropping, modifying, or inspecting the messages
passed between components. We identified two means of
enacting MITM in ROS, through a proxy design pattern, e.g.,

ROSRV [14], or through topic remapping, e.g. ROSMonitor-
ing [37]. The former works by generating a proxy-based of
the ROS Master node which has full control of the nodes
and topics during runtime, deploying an intermediary node
for message diverting when required. The latter launches an
intermediary node and performs topic remapping before
execution – asking for the topic names that should be
diverted.

1.9.5 Exemplars

Proxy. ROSRV [14] deploys a ROS master node proxy, namely
RVMaster �, that acts as a firewall, blocking the access to the
ROS master node port. This node, in turn, is responsible for
creating MITM nodes (also called monitors) that intercept the
messages flowing between nodes in the system. RVMaster
instantiates the MITM nodes according to user-provided
specifications of access policies, even though it does not
require any change to the system under scrutiny. Listing
4 portrays the createInterceptors() method from the
RVMaster that enacts MITM monitor nodes by re-subscribing
to a new set of topics.

Listing 4: Creating proxy-based MITM nodes in ROSRV.

1 void ServerManager::createInterceptors(){
2
3 for (std::map<std::string,std::string>::iterator

it=rv::monitor::topicsAndTypes.begin(); it!=rv
::monitor::topicsAndTypes.end(); ++it) {

4 string topic = it->first;
5 string datatype = it->second;
6 Monitor *monitor_p = NULL;
7 string monitorname = topic+MONITOR_POSTFIX;
8
9 XmlRpc::XmlRpcValue params, result, payload;

10 params[0] = monitorname;
11 params[1] = topic;
12 params[2] = datatype;
13 string m_uri = "";
14 params[3] = m_uri;
15
16 //create a xmlrpcmanager-client for each

monitor
17 monitor_p = new Monitor(params,rv_ros_host,

monitorname);
18 monitorMap[topic] = monitor_p;
19 m_uri = monitor_p->getMonitorXmlRpcUri();
20 params[3] = m_uri;
21
22 bool f = master::execute("registerSubscriber",

params,result,payload,true);
23
24 //start a new thread with the params
25 boost::thread(boost::bind(&Monitor::

monitorThreadFunc, monitor_p));
26
27 result[0]=1;
28 result[1]="Subscribed to ["+topic+"]";
29 XmlRpc::XmlRpcValue pubs_monitor;
30 pubs_monitor[0] = m_uri;
31 result[2] = pubs_monitor;
32
33 ROS_INFO("Monitor %s successfully registered a

subscriber to topic %s", monitorname.c_str()
, topic.c_str());

34 }

Topic remapping. ROSMonitoring � [37] utilizes topic
remapping to ensure safety and security in the system by

https://github.com/cansuerdogan/ROSRV/tree/master/src/RVMaster
https://github.com/autonomy-and-verification-uol/ROSMonitoring
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creating intermediary nodes via topic name remapping
(roslaunch/remap). Remapping is a core tool from ROS
that enables swapping topic names just before running the
application. Remap, enables inserting an intermediary node
between the other two original nodes. Listing 5 exemplifies
the topic remapping-based MITM strategy applied by ROS-
Monitoring. The code snippet shows that the launch files
are incremented with remap statements including the node
names, original (‘from’) topic and new (‘to’) topic name.

Listing 5: Topic remapping-based MITM in ROSMonitoring.
1 def instrument_launch_files(nodes):
2 ...
3 for (name, package, topics) in launch_files[path]:

4 if node.get(’name’) == name and node.get(’pkg
’) == package:

5 for topic in topics:
6 remap = ET.SubElement(node, ’remap’)
7 remap.set(’from’, topic)
8 remap.set(’to’, topic + ’_mon’)
9 break

1.9.6 Strengths

The MITM strategy enables freezing of the application at the
software level without the normal operation, and rollback in
case the test scenarios are prone to side-effects and do not
require any change in the code.

1.9.7 Weaknesses

Placing nodes between computations may cause performance
overhead in the system under scrutiny. In addition, erroneous
intermediary nodes may affect the functionality of the
system, and thus represent a threat to the test’s reliability.
This guideline does not directly apply to server-based or
parameter-based communication.

2 GUIDELINES FOR QUALITY ASSURANCE
THROUGH RUNTIME VERIFICATION AND FIELD-
BASED TESTING

In this section, we describe twelve guidelines to assist
quality assurance teams to attaining confidence on robotic
applications developed using the Robot Operating System
(ROS). Attaining confidence, in this case, consists of applying
runtime verification and field-based testing. The Prepare
Execution Environment (PE) group contains two guidelines:
PE1 to warn about the overhead acceptance criteria, and
PE2 to create models for runtime assessment. The Specify
(Un)-Desired Behavior group (SDB) contains three guidelines
concerning the specification of desired and/or undesired
behaviors. SDB1 and SDB2 concern the specification of
properties through the use of logic-based languages (SDB1)
or Domain Specific Languages (DSLs) (SDB2). SDB3, in turn,
focuses on scenario-based specifications of test cases. The
Generate Monitors and Test Cases group (MTA) contains
two guidelines. MTA1 focuses on how to improve the
robustness of the system by performing noise and fault
injection. MTA2 discusses how to exploit automation for
monitoring and testing, e.g., generation and prioritization
of test cases. The System Execution group (SE) contains two

guidelines focusing on the importance of using record-and-
replay when performing exploratory field tests (SE1) and
the importance of headless simulation (without GUI) for
optimization and/or automation (SE2). Finally, the Analysis
& Reporting group (AR) contains two guidelines. AR1
focuses on performing postmortem analysis to diagnose non-
passing test cases. While AR2 focuses on the use of reliable
tooling to manage field data.

2.1 PE1. Understand the overhead acceptance criteria
2.1.1 Context (WHEN)
According to practitioners, performance is among the three
most important quality attributes when designing a robotic
application in ROS [10]. Performance is often important in
robotics because many computations performed by robots
tend to be data-intensive, e.g., computer vision, planning,
and navigation [10]. Gaining confidence in robotic appli-
cations, then, should not interfere with the nominal per-
formance of the robot under scrutiny. Less (or no) impact
on performance is especially desirable when the assurance
gathering process interacts with the running system, for
instance, in-the-field testing and runtime verification. We
name the extra load available for gaining confidence on
ROS-based applications as overhead acceptance criteria. The
overhead acceptance criteria can be allocated to monitoring,
isolation, or maintaining the security of privacy during the
runtime assessment session [4].

2.1.2 Reason (WHY)
A rule of thumb says that more observations tend to
enable more precise assurance arguments within a limit.
Observing, however, is never free from side effects, incurring
in overhead [8]. Therefore, the quality assurance team
must contrast the precision of the assurance arguments
against overhead introduced by the observation medium.
The overhead acceptance criteria are the basis for deciding
the runtime assurance strategy.

2.1.3 Suggestion (WHAT)
The use of runtime verification or field-based techniques
might add computation overhead. The QA team should un-
derstand how much overhead is acceptable; this is important
to decide on a test strategy that will not severely impact the
performance of the running system. Such overhead may be
due to monitoring with ros tracing (git: ros2/ros2 tracing),
component isolation, or security and privacy maintenance
overhead with ROSploit (git: seanrivera/rosploit).

2.1.4 Process (HOW)
Typically, understanding the overhead acceptance criteria
follows from contrasting the required performance for
delivering the required service, aka nominal performance
(e.g., time to reaction, latency, speed), against available
resources (e.g., computing power). The QA team may use
off-the-shelf ROS tooling, like ApexAI/Performance test ,
to understand the nominal performance of the ROS-based
application. The difference between nominal performance
and expected performance may be allocated to the overhead
acceptance criteria. If the nominal performance is close
enough to the expected performance, there is not enough

http://wiki.ros.org/roslaunch/XML/remap
https://gitlab.com/ApexAI/performance_test
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space for implementing runtime assurance techniques. We
categorise three types of overhead that may affect the runtime
assurance process: Runtime Monitoring [37], [44], Isolation
overhead [45], [46], and Security and Privacy overhead [47],
[48].

2.1.5 Exemplars

Monitoring overhead is all extra load put on the system-
under-test due to gathering, interpreting, and elaborating
data about the execution. For example, ROSMonitoring
(autonomy-and-verification-uol/ROSMonitoring �) [37] de-
termines the monitoring overhead by calculating the delay
introduced in the message delivery time between ROS nodes.
The authors analyse the overhead by varying the size of
the system under monitoring, message passing frequency,
and number of monitor nodes. However, their overhead
analysis is not transparent with respect to gathering, inter-
preting or elaborating on data, the analysis looks at the
monitoring overhead as a black box. Another example is
ros2 tracing (ros2/ros2 tracing �) [44] that provides a tool
for tracing ROS2 systems with low latency overhead. The
authors measure monitoring overhead by collecting the time
between publishing a message and when it is handled by
the subscription callback. In short, monitoring and tracing
tools add some overhead that typically affects the message
passing latency, the QA team must understand and define a
precise time allowance to this overhead.
Isolation overhead is all extra load put on the system-under-
test for guaranteeing that the runtime assessment will not
interfere with the normal operation or produce undesired
side effects. As an example, Lahami M. et al. [45] propose
a safe and resource-aware approach to test dynamic and
distributed systems. Safe by employing testing isolation
techniques such as BIT-based, tagging-based, aspect-based,
cloning-based, and blocking-based. Resource aware by set-
ting resource monitors such as processor load, main memory,
and network bandwidth. The authors show that the overall
overhead is relatively low and tolerable, mainly if dynamic
adaptations are not commonly requested. However, there
is no fine-grained evaluation of the overhead introduced
by isolation techniques. In fact, isolation overhead is rarely
reported [46].
Security and Privacy overhead is all extra load put on
the system-under-test for maintaining security and privacy
constraints while testing. For example, ROS-Immunity is a
security tool for preventing ROS-based applications from
malicious attackers. Rivera S. et al. [47], determines overhead
for maintaining the ROS-based system secure, while operat-
ing, in terms of power consumption (in Watts) by comparing
the power draw of the system with and without their tool.
From another stance, Breiling B. et al [48] present a secure
communication channel to enable communication between
ROS nodes using protocols such as Transport Layer Security
(TLS) and Datagram Transport Layer Security (DTLS) per
each ROS topic in the application. The protocols follow
three steps: an initial handshake with mutual authentication,
using symmetric encryption (AES-256), and using Message
Authentication Codes (MAC) for data integrity. Importantly,
they evaluate the overhead introduced for each step, totalling

in a few percentage points (2%-5%) of increase in average
CPU load.

2.1.6 Strengths

Understanding the overhead acceptance criteria in advance
may avoid unexpected interruptions in the ROS application
functionality due to runtime quality assessment procedures.
For example, when testing procedures are mistakenly sched-
uled whenever the ROS-based application is operating under
a high load. Learning about the overhead in advance criteria
may also ask for re-design due to a lack of verifiability during
runtime. For example, when the nominal performance of the
ROS system is close to the expected performance, in value.

2.1.7 Weaknesses

Although there is tooling to support the assessment of the
overhead acceptance criteria, the process for understanding
involves executing the system, collecting performance data
and analysis. This may conflict with time-to-market require-
ments, asking for further negotiation with the business goals
of the ROS-based system.

2.2 PE2. Create models for runtime assessment

2.2.1 Context (WHEN)

Gaining confidence in the running systems can be costly due
to the need for isolation from side effects, preservation of
security and safety, controllability, and observability [4]. One
way to address this issue is through the use of model-based
runtime assessment, which can help to manage complexity
and ensure the safe operation of ROS-based applications [49].
Models can be used to define safety criteria, create digital
twins of the system and its environment, and ensure ade-
quate test coverage. This guideline discusses creating models
for managing the complexity of runtime assessment in ROS.

2.2.2 Reason (WHY)

Modeling is essential for efficient and effective testing of
ROS-based systems in the field. ROS-based systems lack a
built-in system representation, making it difficult to identify
and address bugs without costly calibration of sensors
and actuators [50], [51], [6]. By incorporating models, such
as those used in low-fidelity simulation, the testers can
reveal the same bugs found in real-world navigation [52].
Implementing models in runtime assessment of ROS-based
systems can save costs and improve the overall performance
of the tests.

2.2.3 Suggestion (WHAT)

The QA team might create and exploit models of the system
and/or of its environment (a sort of digital twin) for runtime
assessment, predictive maintenance, checking alternatives,
and so on. For example, they can create a digital twin of the
system by using CPSAML (me-big-tuwien-ac-at/cpsaml), or
formal tools such as UPPAAL combined with UPPAALTron
(doi: 10.1109/ECMR.2015.7324210). In addition, the QA
team may use ROS metamodels (ipa-nhg/ros-model) to
facilitate the use of tools and graphical plug-ins for reverse
engineering models from ROS code.

https://github.com/autonomy-and-verification-uol/ROSMonitoring
https://github.com/ros2/ros2_tracing
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2.2.4 Process (HOW)

Models can be used to create useful representations of
the system’s components for runtime assessment of ROS-
based applications, such representations include (i) models
of the system itself, (ii) models of the environment and (iii)
metamodels.(i) Models of the system itself consider digital
twins of the system or part of the system [53], [54]. (ii) Models
of the environment may be carried out in tools for formal
verification, e.g., UPPAAL [55], [56]. (iii) Metamodels rely on
the Eclipse Ecore technology to encoding rules for modeling,
generating and introspecting ROS-based systems [57], [58]

2.2.5 Examplars

Models of the system itself. Saavedra Sueldo C. et al. [53]
proposes an architecture for integrating digital twins (DTs)
on production systems using ROS. The paper argues that
digital twins should be used as the central component for
the formulation of autonomous decision-making systems
due to their static nature. In order to do this, in their online
repository (INTELYMEC/ROS Tecnomatix �) the authors
provide a ROS node (named plant simulation node) that
performs the same operations (e.g., decision using a method
of reinforcement learning and a material handling procedure)
of its counter-part, but in a controlled environment. The
simulation node can be understood as a mock or model of
self. In a similar direction, Fend A. and Bork D. [54] suggest
model-driven runtime monitoring based on digital twins for
ROS-based applications, namely CPSAML(me-big-tuwien-ac-
at/cpsaml �). CPSAML generates local DT components that
are executed as ROS nodes. The DT component holds the
state of the DT entity; in other words, it provides a model
of the execution life-cycle of its counterpart. Ultimately, the
model of the system can be used for reasoning during testing
and runtime verification.
Models of the environment. The test setup described in
Ernits et al. [55] uses UPPAAL Tron [56] as the primary
test execution engine. First, the QA team should model,
in UPPAAL, (i) an implementation model of the system
under test and (ii) a topological map of the environment.
Second, the QA team integrates an adapter, provided by
Ernits et al. [55], which is responsible for translating messages
between the environment model and the appropriate topics
in ROS, acting as the interface between the ROS-based system
under test and the UPPAAL Tron model of the environment.
Finally, the interaction between the implementation model
(i) and the environment model (ii) is monitored during
system execution and afterwards, the equivalence between
the measured outcomes from the running system and the
outcomes from the model is checked. The operating envi-
ronment, however, is typically prone to uncertainty which
makes modeling the environment a costly activity.
Metamodels. One of the most notable works using models
as a foundation for software development with ROS is
the series on Bootstrapping MDE Development from ROS
Manual Code [57], [58] by Hammoudeh Garcia N. In the
repository (ipa-nhg/ros-model �), a set of metamodels
defined as Ecore models are provided to facilitate the use of
tools and graphical plug-ins for creating models from ROS
code, composing and validating model compositions, auto

generating deployment artifacts, and checking the use of
standard specifications. The repository also includes tutorials
on reverse engineering from ROS code to models, creating a
model using introspection at runtime, and generating ROS
code from models.

2.2.6 Strengths

By using models for field-based testing, it is possible to reveal
bugs in a safe and cost-effective way, without the need for
costly and risky test campaigns in the field; It also allows
for flexibly choosing the model representation, and the level
of detail of the model, according to the needs of the system,
the test scenarios, and the available resources. Models can
be reused in different testing scenarios, and across different
system components, reducing the effort and time required
for testing.

2.2.7 Weaknesses

Large and complex robotics systems may impair the creation
and maintenance of runtime models. Models need to be
updated and maintained as the system evolves, which can
be a costly and time-consuming task. In addition, modeling
can be prone to errors and inaccuracies, which can affect the
quality of the testing results. Models are domain dependent
and may not be easily transferrable between domains such
as healthcare domain, automotive, or aerial domains.

2.3 SDB1. Property specification using a logic-based
language

2.3.1 Context (WHEN)

Robotics systems are complex, inherently hybrid systems
that combine hardware and software components and whose
behaviour is often dictated by close safety, legal, and ethi-
cal considerations [9]. Furthermore, given the increasingly
frequent deployment of ROS-based systems in safety-critical
environments coupled with their dependence on complex
decision-making and sophisticated control systems, it be-
comes necessary to find a form of verification that can
reliably assess the correctness of these systems. This guideline
discusses the use of formal and logic-based languages for
specifying properties for runtime verification and/or field-
based testing.

2.3.2 Reason (WHY)

A logic-based language for verification and/or testing al-
lows specifying properties that describe observable actions,
outputs, how they relate to each other and when they
should manifest [59]. The behaviour is often described using
temporal logic, which enables the specification of desired or
undesired interactions amongst multiple components (ROS
nodes) regardless of the complexity of the system. To simplify
the specification of properties in temporal logic, some of the
tools refer to existent property specification patterns [60],
i.e., a collection of existing known recurrent patterns for the
specification of temporal properties. Specification patterns
also enable the properties formulation in English thanks to
a bidirectional mapping from various temporal logics to a
structured English grammar.

https://github.com/INTELYMEC/ROS_Tecnomatix
https://github.com/me-big-tuwien-ac-at/cpsaml
https://github.com/ipa-nhg/ros-model
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2.3.3 Suggestion (WHAT)
The QA team should be prepared to specify properties using
unambiguous and precise languages like logic-based lan-
guages, as often required by verification tools. User-friendly
instruments, like specification patterns http://ps-patterns.
wikidot.com/, might facilitate the error-prone specification
process and make the specification accessible to people
lacking expertise in logic. For example, HAROS (git: git-
afsantos/haros) uses a logic-based language called HPL for
property specification that is used to synthesize runtime
monitors for testing and verification.

2.3.4 Process (HOW)
There are several choices of tools that use logic-based
languages for properties specification [61], [62], [13], [63], [64].
These tools allow for safety, security, and liveness analyses.
The formal specification languages for ROS-based systems
should provide references to individual resources (e.g. topics)
and message contents as well as temporal operators and
relations in addition to real-time behaviour specifications.

2.3.5 Exemplars

The identified tools make use of various types of temporal
logic.
Linear Temporal Logic (LTL). The work in [64] proposes a
novel architecture, for assertion-based verification by using
monitors synthesized automatically from Linear Temporal
Logic (LTL) assertions. Then, the monitors are encapsulated
into plug-and-play ROS nodes and docker containerization is
used to improve system portability. As an example, Listing 6
shows an LTL assertion to check if a robot arrives at a position
< x2, y2 > before a certain timeout.

Listing 6: LTL assertion to check if a robot reaches a desired
position

1 always((robot x1 = x1 && robot y1 = y1 && newGoal)
2 implies
3 (currentTime < timeOut U robot x2 = x2 && robot y2 =

y2))

Signal Temporal Logic (STL). Signal-temporal logic is a
special case of MTL where properties are defined over
signals. They enable real-time reasoning and constraint
specification. In [63], [65], Signal Temporal Logic (STL) is
used to describe Cyber-Physical Systems (CPS) properties.
The approach introduces the novel quality of robustness
semantics, which implies the system’s ability to measure how
far is an observed behaviour from satisfying or violating a
specification. Concretely, the developed tool was rmtat �,
which was later augmented to support integration with ROS-
based systems with rtamt4ros �.
Metric Temporal Logic (MTL). Some runtime verification
tools add the ability to handle real-time specifications since
the reaction time can have a strong influence on the success
or failure of the robot’s mission. Taking this aspect into
consideration, the RV tools described in [61], [13] use Metric
Temporal Logic. On the other hand, [62] addresses it by
combining Past-Time LTL to express complex formulas with
timed constraints on the evaluation of these formulas. Hu
et al. design their robot monitoring specification language
based on Discrete Time-MTL (DT-MTL)s [13]. The language’s

syntax embeds a time interval in the traditional MTL notation.
Their approach uses the system’s periodic nature to discretize
the real-time property and replace the real number in time
constraints with the number of CPU clock cycles.
TCTL. Timed automata is one of the most widely used
formal models to specify and verify real-time systems.
Rodrigues A. et al. specify timing constraints using Timed
Computational Tree Logic (TCTL) to encoding the require-
ments of a safety-critical healthcare monitoring system in
ROSseams18/uppaal � [66]. Halder et al. specify UPPAAL
models over ROS applications by performing manual code
analysis. This phase requires the extraction of ROS code
parameters that affect the desired properties of ROS-based
robotic applications, including the publishing rate, the sub-
scriber’s spin rate to process callbacks, the time to transmit
messages over channels, and the time to process callbacks.
Properties are specified over queue overflow constraints [30].
Patterns-based specification. In [61], the authors introduce
HAROS, which is a framework for quality assurance of ROS-
based code. The use of the formal language HPL ensures that
after entering a state of high priority (where the messages
in the topic ’/state’ have data greater than 0), the system
should remain in that state for, at least, one second. This
can be accomplished through the following property defini-
tion: "globally: /state {data > 0} forbids /state {not
data > 0} within 1000 ms". As can be seen, the property
specification makes use of specification patterns, similar to
the absence pattern with a time constraint [60]. Recently, other
sets of patterns specific to robotics have been defined [67],
[68]; even though they have been conceived for mission
specification, they could be profitably used for verification
and (scenario-based) testing.

2.3.6 Strengths
Using logic-based languages to specifying properties offers
a standardized approach to validation in compliance with
well-adopted specification pattern.

2.3.7 Weaknesses
It is noted that the properties’ expressiveness is often limited
by the description language meaning that diffent languages
and tool sets may enable specific property specifications or
not.

2.4 SDB2. Use Domain Specific Languages to Specify
Properties
2.4.1 Context (WHEN)
To address the safety challenge, one option is defining
a clearly specified and isolated layer, which is declared
separately from the main program and that can express
the functional safety-critical concerns in terms of externally
observable properties of the software [69]. This guideline
discusses the use of a Domain Specific Language to define
the properties of the system.

2.4.2 Reason (WHY)
As a more informal, code-like alternative, the QA team
has the choice of utilizing a Runtime Verification tool that
has a built-in ROS-tailored language and allows the quality
assurance team to specify and validate the correct behaviour
of the system.

http://ps-patterns.wikidot.com/
http://ps-patterns.wikidot.com/
https://github.com/nickovic/rtamt
https://github.com/nickovic/rtamt4ros
https://github.com/rdinizcal/SEAMS18/tree/master/uppaal
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2.4.3 Suggestion (WHAT)
In complement to logic-based instruments, the QA team
may opt to use verification tools that allow code-like
specifications of properties to simplify the definition of
the desired behavior. For example, ROSMonitoring (git:
autonomy-and-verification-uol/ROSMonitoring) allows for
code-like specifications of properties in a domain specific
language (DSL) targeted to the properties such as writing
assertions over the robot’s position using if-else constructs.

2.4.4 Process (HOW)
The works in [69], [37], [14] describe DSLs for specifying
properties. The properties described with the DSL are
checked mainly by intercepting the messages from relevant
services and topics from the ROS system. It is important to
consider the nature of the properties that should be specified
and the expressiveness of the DSL. These DSLs give often
the possibility to specify actions that should be performed
in reaction to a violation of a safety property. It is important
that the QA team chooses, customizes or conceives the DSL
that best suits the specific needs.

2.4.5 Exemplars

The runtime verification tools described in [37], [14] are
based on a DSL that allows collecting the information from
the different software components (ROS nodes) at a given
moment in time and perform a corresponding action if one
or more of the predefined rules are broken. In [14], the
authors define ROSRV. Listing 7 shows the definition of a
condition for which the system will be monitoring and the
corresponding action to be taken in case a violation occurs.

Listing 7: Example of position and velocity property specifi-
cation in ROSRV

1 event moveOrStop(double lx, double ly, double lz)
2 /landshark_control/base_velocity
3 geometry_msgs/TwistStamped
4 ’{twist:{linear:{x:lx,y:ly,z:lz}}}’
5 {
6 if( posx > 9 ) {
7 if(vectory * lx < 0) {
8 ROS_WARN("Position not allowed");
9 return;

10 }
11 }
12 }

In ROSRV, the event definition structure is as follows.
First, the keyword event must be followed by the event
name and the parameters that need to be provided to the
method. Consequently, one must state the topic name, data
type and the mapping from the topic information to the
method parameters. Such structure is shown in Listing 7.

In [69], the property definition DSL (namely RuBaSS) al-
lows incorporating time into the rule definition. For example,
one can describe a safety property as "max_speed_exceeded:

linear_speed > max_speed for 2 sec;" where the lin-
ear speed and max speed values are extracted from messages
published in corresponding topics. Consequently, this prop-
erty checks whether the comparison holds true for 2 seconds
using the DSL defined by the authors.

2.4.6 Strengths

The use of Domain Specific Languages for specifying prop-
erties brings a programmer-friendly interface for runtime
validation. Moreover, it promotes the definition of well-
structured and standardized approaches.

2.4.7 Weaknesses

On the negative side, the expressiveness of properties is
limited by the DSL used.

2.5 SDB3. Use languages and tools to scenario-based
specification of test cases

2.5.1 Context (WHEN)

Scenario specification allows the QA team to test robots on
credible and complex activities since it defines the course of
a robotic mission [16]. Gathering confidence in autonomous
systems through so-called verified scenarios is a cornerstone
of simulation testing [9]. However, designing test cases in the
form of scenarios implicitly requires accounting for possible
variations and conditions. This makes scenario-based testing
a challenging task and often deemed infeasible. In addition,
unexpected scenarios frequently underlie failures in robotic
systems [16]. Therefore, it is important to consider real-world
data during scenario generation since it permits to focus on a
range of scenarios that can be unexpected during the design
phase [4].

2.5.2 Reason (WHY)

Scenario-based test case generation is a powerful approach
to verify ROS-based applications because it allows for the
systematic exploration of different situations and conditions
that the robotic system may encounter in the real world.
By defining scenarios, the testing team can ensure that
the application behaves correctly under a wide range of
circumstances, including both expected and unexpected
events.

2.5.3 Suggestion (WHAT)

The QA team might integrate scenario specification lan-
guages and tools to enable a systematic exploration of real-
world situations and conditions for ROS-based applications.
For example, Geoscenario (git: rodrigoqueiroz/geoscenar-
ioserver) uses behavior trees to program dynamic interac-
tions between the system-under-test and other vehicles in
the scenario. In addition, SCENIC (git: BerkeleyLearnVer-
ify/Scenic) is a probability-based programming language
that enables the specification of rare events in environment
models that are used to generate test cases for vehicles
running on the CARLA simulator (git: carla-simulator/carla)
that may be further integrated to testing ROS-based systems.

2.5.4 Process (HOW)

To implement scenario-based specifications for testing ROS-
based applications we recommend describing technology
enablers and motivating use cases. Technology enablers, in
this case, list a set of languages that assist the design of
scenarios for testing ROS-based applications. The technology-
enablers vary with respect to human-vehicle behavioral
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description [70], to probability-based programming of scenar-
ios [71], and integrating graphical simulation with Simulink-
based control design and ROS [72]. From the point-of-
view of use cases, scenario specification may turn useful to
perception monitoring [73], validating multi-layered control
strategies [74], and pedestrian simulation scenarios [75].

2.5.5 Exemplars

Technology-enablers: GeoScenario � [70] proposes using
a behavior tree-based DSL to describe autonomous human-
vehicle models for scenario-based testing. The toolset ad-
vocates for scenario specifications that reflect dynamic
interactions between humans and the subject system in real
traffic conditions. Therefore, behavior trees are used as a
fundamental control-flow strategy. GeoScenario interfaces
with a simulation layer where LIDAR and camera capture
data from the vehicle controller implemented at ROS-level.
Listing 8 showcases an implementation of one of the agent’s
behavior in a pre-crash scenario from NHTSA. The vehicle
changes the lane to the left, then continues driving using
another drive tree implementation. The operator ’?’ stands
for fallback operation, ’- ’ is sequential, ’condition’ evaluates
to a Boolean value, and ’maneuver’ executes a task.

Listing 8: Lane change human-vehicle implementation in
Geoscenario.

1 behaviortree LaneChange:
2 ?
3 ->
4 condition c_trigger(sim_time (tmin=4))
5 ->
6 condition c_reach(gap(target_lane=Left,range=5,

repeat=False))
7 maneuver cutin(MCutInConfig(target_lane=Left,

delta_s=(5,-3,0)))
8 subtree drive_tree(m_vel_keep=MVelKeepConfig(vel=

MP(14.0,10,6)))

SCENIC � [71], a probability-based programming lan-
guage, argues for the specification of rare events in environ-
ment models for autonomous vehicles and robots for testing
purposes. The language relies on the specification of scenarios,
i.e., configurations of physical objects and agents, and how
they change over time. In combination with CARLA [76],
SCENIC can be used to specify scenarios for ROS-based
simulation test scenarios. For example, departing from a
Metric Temporal Logic (MTL) safety specification, SCENIC
generates (with VERIFAI [77]) 2000 scenarios for a vehicle
performing a right turn at an intersection, yielding to the
crossing traffic.

Supporting Software-In-the-Loop (SIL) simulation test-
ing, Xu C., et al. [72], introduces a platform that unites
PreScan [78], MATLAB/Simulink [79], and ROS. The three-
layered platform enables virtual sensors and scenarios
designed in PreScan, control design in MATLAB/Simulink,
and environment perception, planning and control execution
at ROS-level. The proposed stack features graphical scenario
specification including sensor simulation and may be used
for mobile robotics with a focus on self-driving simulation
testing.
Use Cases: The work in [73] integrates PerceMon �, a tool

for monitoring spatio-temporal specifications for perception
systems, with the CARLA simulator (integrated with ROS),
and, in cohort with the OpenSCENARIO specification format
defines a set of high-level scenarios for their experimenta-
tion setting. Their experimental scenario features sunlight
exposure, cyclists crossing or poorly occluded pedestrians,
and rendering corner case test fixtures. Similarly, [74] utilizes
a ROS-CoppeliaSim [80] integration to validate their three-
layered control decoupling strategy for lateral and longitu-
dinal motion. The tool permits defining motion constraints
to the mechanical joint points of the high-precision vehicle
model, which forms a front-wheel steering and rear-wheel
drive smart car model powered by Ackerman steering. [75]
uses pedsim ros �, a pedestrian simulator tool that relies on
XML scene specification, for example Listing 9.

Listing 9: Corridor scenario specification with ped-
sim ros (Link to source).

1 <?xml version="1.0" encoding="UTF-8"?>
2 <scenario>
3 <!--Obstacles-->
4 <obstacle x1="-0.5" y1="-0.5" x2="29.5" y2="-0.5"/>
5 <obstacle x1="-0.5" y1="-0.5" x2="-0.5" y2="14.5"/>
6 <obstacle x1="-0.5" y1="14.5" x2="29.5" y2="14.5"/>
7 <obstacle x1="29.5" y1="-0.5" x2="29.5" y2="14.5"/>
8
9 <waypoint id="east" x="5" y="5" r="2" b="1"/>

10 <!-- Sink -->
11 <waypoint id="west" x="25" y="5" r="2" b="2"/>
12
13 <waypoint id="robot_goal" x="22" y="27" r="2"/>
14 <waypoint id="robot_start" x="4" y="4" r="2"/>
15
16 <agent x="4" y="4" n="1" dx="0" dy="0" type="2">
17 <addwaypoint id="robot_start"/>
18 <addwaypoint id="robot_goal"/>
19 </agent>
20
21 <!--AgentClusters-->
22 <source x="2" y="5" n="8" dx="3" dy="5" type="0">
23 <addwaypoint id="east"/>
24 <addwaypoint id="west"/>
25 </source>
26 </scenario>

2.5.6 Strengths
Scenario-based testing provides a systematic and compre-
hensive approach to verify ROS-based applications under
various conditions. The integration of scenarios with ROS-
compatible simulation environments allows for realistic and
repeatable testing.

2.5.7 Weaknesses
The exemplars provided are primarily focused on the auto-
motive domain, which may limit the generalizability of the
guideline to other robotic application domains.

2.6 MTA1. Improve the robustness of the system by
performing noise and fault injection
2.6.1 Context (WHEN)
When testing a robotic system, the QA team needs to gain
confidence that it will behave safely when faced with un-
expected inputs [27]. Techniques such as Fault Injection (FI)
and Noise Injection (NI) can aid the QA team in identifying

https://github.com/rodrigoqueiroz/geoscenarioserver
https://github.com/BerkeleyLearnVerify/Scenic
https://github.com/CPS-VIDA/PerceMon.git
https://github.com/srl-freiburg/pedsim_ros
https://github.com/srl-freiburg/pedsim_ros/blob/master/pedsim_simulator/scenarios/corridor.xml
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weaknesses, evaluating the resilience of the system as well
as measuring its performance under stress. The deliberate
introduction of faults such as hardware failures, network
interruptions, software errors and signal alterations, can help
assess how well the system recovers from these issues. In
addition, fault injection is the central tool of a technique
called Fault Based Testing, in which the generated test cases
address potential faults that can be foreseen at design time[4].

2.6.2 Reason (WHY)
Testing techniques based on fault injection and noise injection
aid in increasing the overall reliability of the system under
testing.

2.6.3 Suggestion (WHAT)
The QA team can use tools that generate noise or inject faults
to gain confidence that a robotic system will behave safely
when faced with unexpected situations. For instance, Robo-
Fuzz (git: sslab-gatech/RoboFuzz) enables the generation of
faults (in ROS 2 applications) through message mutation with
three intents: violation of physical laws, violation of user-
specified properties, and cyber-physical discrepancies. More-
over, RosPenTo (git: jr-robotics/ROSPenTo) enables security
assessment by (un-) registering publishers or subscribers,
isolating nodes or services, and injecting false data in the
messages in ROS 1 applications.

2.6.4 Process (HOW)
Fault injection is a testing technique to evaluate the robust-
ness of a system that consists of intentionally introducing
faults, failures and errors into the software system. The fault
injection can occur at various levels, these generally are
defined as the software, the hardware and the network layer.
In the software layer, for instance, typical operations include
the modification of variables and the manipulation of input
data. Noise injection, instead, refers to introducing noise or
interference into a system with the aim of improving the
system’s resilience. Several tools have been developed in re-
cent years to apply these concepts in the ROS domain, either
based on noise injection ros1 fuzzer � ros2 fuzzer � [81] or
fault injection [41], [82] ROS Fault Injection Toolkit � camfitool.

2.6.5 Exemplars

Noise Injection: With the goal of effectively stressing a data-
driven ROS system, Seulbae Kim et al. [81] implemented
RoboFuzz �, which is based on a data type-aware mutation
technique aimed at finding correctness bugs in the system.
RoboFuzz takes a target system and a test strategy as input
and outputs the report of found bugs after performing a
fuzzing technique based on message mutation. In addition,
RosPenTo [83] (jr-robotics/ROSPenTo �) provides the opera-
tions of unregistering and registering publishers/subscribers,
isolating nodes and services, and injecting false data in
messages. As an example, the authors show how to use
the tool to isolate the safety monitor node and to inject fault
data in a robotic operation in such a way that the robot may
harm humans [83].
Fault Injection: Targeting the inclusion of Fault Injection
in the system, the imfit � tool, which is based on applying

mutation testing to relevant files with the ROS source code,
is of great value [41]. The tool allows the user to create fault
injection plans and select the operating conditions for the
mutation process. Furthermore, fault metrics and diagrams
can be obtained afterwards to analyze the system’s response.

In addition, ROS Fault Injection Toolkit � is a tool that
aims to test the reliability and fault-tolerance of a ROS-based
system while allowing for user-controlled fault injection,
targeting especially the domain of image processing for
autonomous driving. Similarly, camfitool is an official ROS
tool which also allows the user to inject faults in images, but
it additionally provides a simple intuitive graphical interface
as well as the ability to perform the injection retrospectively
or in real-time.

In the domain of Unmanned Aerial Vehicles (UAV), the
authors in [82] present a ROS-based application the system is
built as a ROS node and leverages the ROS communication
protocol and Linux system to inject faults. As an illustrating
example, the authors analyse the effect of corrupting the
execution of modules related to the generation of the flight
command and measure the impact on the quality of flight.

2.6.6 Strengths
It improves the reliability of the system. The faults injected
can mirror real-world conditions. Demonstrating resilience
can build confidence in the system.

2.6.7 Weaknesses
Designing and implementing fault and(or) noise injection
scenarios can be complex. Injected faults might lead to
scenarios that never occur in the real world. The injection
process can be resource-expensive and time-consuming.

2.7 MTA2. Exploit automation for test case generation,
test case prioritization and selection, oracle and monitor
generation
2.7.1 Context (WHEN)
Automation of testing activities is getting increasing attention
in the robotic domain, even in the case of field-based testing.
Automation can be exploited for various activities, including
test case generation [27], prioritization, selection, and oracle
generation. The benefits brought by automation are various:
it helps improving the efficiency, effectiveness, and reliability
of the software testing processes, e.g. by increasing the test
coverage and providing consistency and repeatability in
the testing process. However, when applying automation
in testing there are several challenges to be considered [16].
First, it needs to deal with the environmental complexity and
its high variability. Second, specifying and/or generating an
oracle that automatically distinguishes between correct and
incorrect behaviours is not always obvious. Consequently,
the test automation in field-based testing, is still limited and
relies heavily on human contributions [4].

2.7.2 Reason (WHY)
Automating testing activities can improve efficiency, as
they can be run quickly and repeatedly without human
intervention. This leads to quicker feedback on the quality
of the software. Also, automation is essential to enhance
the efficiency, effectiveness and reliability of the software

https://github.com/aliasrobotics/ros1_fuzzer
https://github.com/aliasrobotics/ros2_fuzzer
https://github.com/jpdias/ros_fault_inj_toolkit
http://wiki.ros.org/camfitool
https://github.com/sslab-gatech/RoboFuzz
https://github.com/jr-robotics/ROSPenTo
https://github.com/inomuh/imfit
https://github.com/jpdias/ros_fault_inj_toolkit
http://wiki.ros.org/camfitool
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testing processes. Moreover, as the system grows and evolves,
automated test suites can generally be extended easily to
accommodate new features and changes. Indeed, there is an
initial investment to be made in creating and maintaining
the automation machinery.

2.7.3 Suggestion (WHAT)
The QA team should exploit automation tools for test case
generation, test case selection and oracle generation, as
well as other testing activities, to efficiently gain confidence
in ROS-based systems in the field. For example, Mithra
(pdf: https://afsafzal.github.io/materials/AfzalMithra.pdf)
learns oracles from logs generated during the execution,
it is motivated by a case from ArduPilot and tested
in autonomous racing cars built on ROS. In addition,
HAROS (git: git-afsantos/haros) promotes test case gener-
ation from properties using a tool called Hypothesis (git:
HypothesisWorks/hypothesis). Finally, a technical report
(pdf: https://www.cse.chalmers.se/∼bergert/paper/2022-
iros-roboticstesting.pdf) details how a company building
mobile robots for disinfection uses equivalence partitioning
for test case selection for the field.

2.7.4 Process (HOW)
To effectively implement test automation, one important step
concerns the oracle specification, which is a mechanism or
criteria to determine whether a test has passed or failed
[84]. A novel approach in automatic oracle generation based
on telemetry data which is validated using a ROS-based
system is proposed in [85]. An important automation activity
is the test case generation, with the aim of crafting tests
cases to cover various functionalities, scenarios and edge
cases of the system. For achieving this, a viable approach
is to use Property Based Testing [86], where test cases are
automatically generated to target specific properties of the
system. Another important automation activity concerns the
test selection, which aims to select, in the search for efficiency,
the relevant and representative scenarios to be tested. In
this area, equivalence testing is a technique that allows us
to reduce the amount of test cases used by dividing the
generated cases in equivalence classes, as evidenced in [87],
where the authors study ROS-based systems in the domain
of service robotics.

2.7.5 Exemplars

Technology enablers: As a technology enabler, rostest7 is a
ROS framework that allows us to do full integration testing
across multiple nodes. In the task of test case generation
in particular, one crucial component of the library is unit
test. This module makes it possible to perform ROS node
integration-level tests as well as code-level unit tests. In the
case of ROS 2, the testing mechanism is ingrained in the
structure of the packages, which makes the test development
considerably easier.

Oracle specification: In the area of automated oracle
generation, the authors of [85] present Mithra, which is
a novel and unsupervised oracle learning technique for
Cyber-Physical Systems (CPS). The approach is applied to

7. http://wiki.ros.org/rostest

autonomous racing cars built for ROS. The oracle learning
approach builds oracles by clustering telemetry logs repre-
sented by a novel formulation of multivariate time series
(MTS) that effectively and concisely encodes correct CPS
behaviour.

Test case generation: Santos et al. [86] rely on property-
based testing (PBT) to generate test cases driven by properties
specified in the form of assertions. The tool Hypothesis �
receives a model of ROS configurations and generates
customizeable property-based scripts for tests aimed at these
configurations. It builds on top of configuration models
extracted using HAROS, a static analysis framework for
ROS applications.

As another example, in the domain of mobile robots, the
work in [88] presents an approach to automatically generate
test cases in the form of stressful trajectories. In essence, the
work integrates kinematic and dynamic physical models of
the robot to generate valid trajectories. The test case generator
incorporates a parameterizable scoring model to efficiently
generate valid yet stressful trajectories for a broad range of
ROS-based mobile robots.

Test case selection: As a test selection mechanism, one
commonly used technique is Equivalent Partitioning. The
objective of equivalence partitioning is to minimize test
case explosion, i.e. reduce the high number of possible
combinations of the properties that will be tested. The idea
behind Equivalence Partitioning is to group the test cases
into equivalence classes according to how they handle valid
or invalid data [87]. The authors report the experience of
field testing in the domain of service robotics. In particular,
the system under study was the Kelo AD disinfection robot
whose software stack is based on ROS. To implement the
equivalence testing, the criteria for defining the classes in-
cluded robot motion, person posture, existence of occlusions
and obstacle positions.

2.7.6 Strengths
Automation in testing activities can be executed repeatedly
with low effort and cost. Moreover, it brings benefits in terms
of efficiency, effectiveness, and reliability.

2.7.7 Weaknesses
There is a high initial investment of time and resources.
There is also a maintenance overhead related to maintaining
the automation machinery when the system evolves. Test
generation may not scale for complex scenarios.

2.8 SE1. Use record-and-playback when performing
exploratory field tests
2.8.1 Context (WHEN)
In order to effectively select which test scenarios should be
escalated to the field, the testing teams often perform ex-
ploratory field tests [4]. Exploratory testing is an experience-
based technique where the tester designs and executes
tests based on prior knowledge, previous tests, curiosity,
and other heuristics for common failures [89]. For instance,
exploratory field tests may be useful for identifying corner
cases that could be missed during design [87], or calibrat-
ing (e.g., tuning parameters [90], [91]) the system under
scrutiny before committing to the field test scenario. ROS

http://wiki.ros.org/rostest
https://github.com/HypothesisWorks/hypothesis
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practitioners typically use Record and Playback (aka record-
and-replay) for testing, debugging and developing new
algorithms [16]. Record-and-playback is especially useful
for performing exploratory tests of feedback loop systems
since they provide lightweight means to record execution
traces without preventing the testing team from freely
exploring scenarios in the field. In ROS, record-and-playback
is a technique that consists of recording message exchange
between ROS nodes and enabling the user to reproduce the
set of recorded messages in a specific order. The nominal
use of record-and-playback, however, does not necessarily
consider information from the field, placing the assessment
(i.e., testing, debugging, analysis) in jeopardy.

2.8.2 Reason (WHY)
Escalating exploration scenarios to the field asks for
lightweight means to recording data for scenario reproduc-
tion.

2.8.3 Suggestion (WHAT)
When running exploratory field testing, the QA team should
use record-and-playback in order to keep track of the
explored field scenarios, simplify error analysis, find and
reproduce corner cases, and help with parameter tuning.
The standard tool for record-and-playback in ROS is rosbag
(wiki: http://wiki.ros.org/rosbag) but there are a few tool
derivations supporting effective record-and-playback. For
example, Rerun.io (git: rerun-io/rerun) promotes a graphical
interface with a focus on the visualization of bag data
leveraging common datatypes used on perception algorithms.
In addition, NuBots (git: NUbots/NUbots) uses a genetic
algorithm for tuning parameters for the RoboCup over data
collected in field explorations after data bags.

2.8.4 Process (HOW)
Record-and-playback is well known by the ROS commu-
nity. The ROS environment provides rosbag, a package
that natively enables record-and-replay, which is frequently
maintained and active. A few tools extend rosbags with
addons to more expressive visualizations and data types (e.g.,
Rerun.io) or building on largely used behavior models (i.e.,
behavior trees) to replay robot behavior within mixed-reality
scenarios [92]. Moreover, record-and-replay for exploring
field testing scenarios used for simplifying error analysis [2],
finding corner cases [87], and parameter tuning [91], [90].

2.8.5 Exemplars

Technology-enabler: The standard library for record-and-
playback in ROS is rosbag � (or rosbag2 �). The rosbag
package provides a means for recording exchanged messages
in so-called bag files and reproducing the messages between
components in release order. In addition, the package con-
tains tools for analyzing, processing logs, and visualizing
exchanged messages. Recent research, builds on top of
rosbag to encode more expressive tooling for applying
records and reproducing for testing purposes, for instance
using behavior trees to replay robot behavior in mixed
reality [92]. Rerun.io � provides a general-purpose tool
with focus on visualization of bag data which leverages

common datatypes used in perception stack for robotics
applications. Rerun enables URDF scene plotting, with 2d
and 3d transformations, camera, odometry and tf transforms
(e.g., rerun/ros node example �)
Simplifying error analysis: Beul M. et al. [2] extensively
used bags to record the state of their unmanned aerial
vehicle during field testing, keeping rosbag activated even in
between experiments to avoid setting up overhead. Once the
experiments are done, the authors filter and analyse the data
using in-house tools including recording mission executions,
editing traces and loading them for testing purposes. Finally,
the authors claim that the toolset helped by simplifying
the error analysis that was running over exploratory field
scenarios (named experiments) where they logged user-
defined missions in terms of ordered sets of 4D waypoints.
Finding corner cases: Ortega A. et al. [87] studied field
testing experiences with an industrial-strength service robot
(i.e., for hospital disinfection) transitioning from lab exper-
iments to an operational environment. They conclude that
the field testing strategies employed can be categorized into
two phases, exploratory field testing and field endurance
tests. Exploratory field testing helps find defects caused
by variability in the environment, thus identifying corner
cases [87]. However, replicating corner cases is challenging
due to a lack of tooling to extract data from the field
experiments. After all, the data collected from the fields
must be (re-)useable, asking for tooling such as record-and-
replay.
Parameter tuning: Algorithms using multi-objective op-
timization for improving functionality [91] or managing
quality attributes (e.g., reliability) at runtime [90] may benefit
from recording data in exploration scenarios and playback
for tuning parameters. Zahn b. et al. [91] implements
NUbots and uses a genetic algorithm (namely NSGA-II)
to tune the parameters of a kicking strategy for a football
robot player in the Robocup, for that, they rely on record-
and-playback. NUbots �, however, instead of relying on
standard ROS tooling to record-and-playback provide their
own implementation. Similarly, Caldas et. al [90] uses an
implementation of their own to record whether a healthcare
system (namely BSN � [23]) presents faults at task-level
execution, then playback the recorded data in a data mining
pipeline (using also NSGA-II) to tuning the parameters of a
software controller.

2.8.6 Strengths
Record-and-playback is a good instrument to reduce the
need for maintenance during quality assurance. It fosters
also the repeatability of scenarios that would be rather lost
when exploring field scenarios in an ad hoc way.

2.8.7 Weaknesses
Record-and-replay may not scale well [93], can be the door
for security exploits [11], and lacks means for fine-grained
control of their recording thus the emergence and need for
extensions to rosbag.

2.9 SE2. No GUIs! Prioritize headless simulation
2.9.1 Context (WHEN)
Simulation is a great way to validate that a robot behaves
as expected [16]. It can also be used in hybrid approaches

https://github.com/ros/ros_comm/tree/noetic-devel/tools/rosbag
https://github.com/ros2/rosbag2
https://github.com/rerun-io/rerun
https://github.com/rerun-io/rerun/blob/main/examples/python/ros_node/main.py
https://github.com/NUbots/NUbots
https://github.com/lesunb/bsn
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to combine real data from field with simulation engines,
therefore making the testing more realistic [94]. Then, sim-
ulation can be useful as an isolation mechanism for testing,
given that it can separate in-vivo testing from the production
processes by reproducing the main process in a simulator
based on information gather from the main execution by
means of probes [4]. Furthermore, as mentioned in [27],
the QA team can use replay and subsystem testing to
check the behaviour of certain components of the system
without a full simulation by starting them up in isolation and
replaying the logs. Running the simulators stripped of their
Graphical User Interface (GUI), also referred to as headless
simulation, allows QA teams to (i) scale up the testing of
the robot behavior towards large-scale experimentation, (ii)
reduce the resources consumption, and (iii) properly organize
experiment with automatic generation of scenarios, operation
environments where the robots should act, and/or automatic
injection of noise or uncertainty.

2.9.2 Reason (WHY)
Running the simulation headlessly allows one to avoid the
overhead of rendering graphics and updating the GUI, as
well as help in saving computational resources. Furthermore,
headless simulation enables automation and make it feasible
to integrate simulation with testing activities and incorporate
it into continuous integration / continuous deployment
(CI/CD) pipelines.

2.9.3 Suggestion (WHAT)
When it is possible to test or verify without hu-
man supervision, the QA team should prioritize head-
less simulation to avoid unnecessary overhead, en-
able large-scale experimentation, and facilitate integra-
tion with CI/CD pipelines. Example of tools support-
ing headless simulation are Gazebo (git: gazebosim/gz-
sim), V-REP (wiki: http://wiki.ros.org/vrep ros bridge),
ARGOS (web: https://www.argos-sim.info/), MORSE
(https://morse-simulator.github.io/), and MVSim (git: MRP-
T/mvsim). As a complement, OpenDaVINCI (git: se-
research/OpenDaVINCI) interfaces with ROS and has been
widely used for testing autonomous driving systems.

2.9.4 Process (HOW)
To run a simulator in headless mode, the user typically needs
to specify a particular command-line argument or config-
uration setting before initiating the simulation. Although,
in most of these simulators, the visual interface and the
simulation engine are tightly coupled [95], many of them,
including Gazebo, V-REP, ArGoS [96], [97], MORSE, MVSim,
and OpenDaVinci [98] allow for this setting to be set.

2.9.5 Exemplars

Technology Enablers: Most of the widely used simulators in
the domain of robotics have a way to specify the intention
of running the simulation headless. In Gazebo, it is done
by specifying an option either through the command line or
in the launch file8, although as stated in [95], there is still
some instability in the support of this feature. V-REP also

8. https://answers.gazebosim.org/

allows a user to set a headless simulation by adding a special
option in the execution of the program.9 Furthermore, the
ARGOS simulator [96], created to support the simulation of
large scales swarms of robots, efficiently supports a headless
mode of operation; it has been proven to outperform Gazebo
and V-Rep simulators when running headless in small scenes
with up to 10 robots [97].

Other simulators that allow headless operations include
MORSE �, although the feature has only been tested in
Linux, and MVSim �, which is a lightweight simulator
capable of running real-time scenarios for multiple vehicles.

Use cases: The authors of [95] propose a paradigm
to incorporate validation via headless simulation into the
continuous integration cycle. In addition to providing an
illustrating use case of how to build and connect the different
component of such a system, they provide a set of generic
steps to be followed during the setup phase. The authors
of [98] develop a system in which they setup a virtual test
environment targeting algorithms that will run in complex
autonomous driving systems. As a result of this work, they
build the open source environment OpenDaVinci, which
includes libraries that enable the reuse of the algorithms
to be tested in headless simulations as part of unit tests.
They demonstrate how to use the framework in combination
with the simulation environment to develop a self-parking
algorithm �.

2.9.6 Strengths
With headless simulation, the feedback is obtained faster, the
simulations therefore can scale across multiple processors
and cloud servers, and it makes possible to integrate the
simulation into continuous integration pipelines.

2.9.7 Weaknesses
Debugging is more challenging without visual feedback
as it is considerably more difficult to locate the issues or
understand unusual behavior.

2.10 AR1. Perform postmortem analysis to diagnose
non-passing test cases
2.10.1 Context (WHEN)
The test case execution phase results in reports yielding a
set of ran test cases paired with Boolean results attesting
whether the cases passed or failed. Failing test cases, often,
indicate the reason for failure by comparing the expected
outcome with the actual outcome. However, that may not be
enough to understand why did the robot fail that test case, since
such assertions do not comprehensively entail structural
information about how the ROS-based system under test
works. Such lack of information poses a risk to the usefulness
of the executed tests. In order to provide fruitful information
back to the development team, the testers should make the
most out of the data by delving into a postmortem analysis
for deriving explanations for the failed case [8].

2.10.2 Reason (WHY)
The postmortem analysis is essential for understanding the
reasons behind the failure of test cases in ROS-based systems.

9. http://www.forum.coppeliarobotics.com

https://answers.gazebosim.org/
https://morse-simulator.github.io/
https://github.com/MRPT/mvsim
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http://www.forum.coppeliarobotics.com
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2.10.3 Suggestion (WHAT)
The QA team should perform postmortem analysis and
diagnose of non-passing test cases to explain the failures
to developers or refine the arguments and confidence in
the robotic system. For example, ROS projects may use a
combination of Nagios (web: https://www.nagios.org/) and
ros/diagnostics for monitoring, collecting and aggregating
runtime data to diagnose failures. Moreover, CARE (git:
softsys4ai/care) may be used for semi-automatic diagnosis of
launch file misconfigurations or may rely on approaches such
as Rason (git: lsa-pucrs/rason/) for multi-robot diagnosis.

2.10.4 Process (HOW)
Natively, ROS provides a diagnostics infra, the ros/diagnos-
tics package10, the package enables manual data aggregation
and analysis11. However, unveiling explanations for the
test case failure requires better support. The testing team
may rely on visualization techniques [99], semi-automatic
diagnostic generators [100], [101], and deployment of extra
infrastructure to support explanations with more data [102].

2.10.5 Exemplars

Visualization: Often, roboticists need to use their technical
experience to identify points of failure and diagnose failed
test cases. With that in mind, Roman F. et al. [99] propose
Overseer, an architecture that unites Nagios (i.e., a general-
purpose open-source monitoring tool12) and ros/diagnostics
(i.e., standard tooling for collecting and aggregating runtime
data in ROS) as a key-enabler to visualization the runtime
information and, in consequence, diagnostics. The overseer
implements a monitoring server responsible for persisting
data generated during the experiments in a database that can
be later accessed by Nagios.
Semi-automated diagnosis: Causal Robotics DEbugging
(CARE) [100] � is a two-phase method for diagnosing
configuration faults (aka misconfigurations) in ROS-based
systems. The method proposes first a causal model learning
step, then an inference over the learnt model step. The
causal model is three-layered and defines causal relations
between (i) software-level configurations or hardware-level
options (e.g., sensors), (ii) a map from configuration options
to how they influence the outcome performance, and (iii)
performance goals. The authors employ Fast Causal Inference
(FCI) to extract the causal model from data. Moreover, the
authors present an algorithm for causal path discovery (by
inference) which finds a locally optimal path between con-
figuration (aka symptom) and performance goal. Following
a similar idea of three layered causal models, Kirchner D.
et al. implemented RoSHA [101] an architecture for self-
healing robotic systems implemented in ROS. Their approach
relies on monitoring, diagnosis, recovery management and
execution. In order to implement the automatic diagno-
sis, RoSHA relies on the standard tool ros/diagnostics to
collect runtime failure information (i.e., w.r.t. component
dependencies, communication, and time relations between
components) to identify why the robot fails. The collected

10. http://wiki.ros.org/diagnostics
11. An official tutorial on analysis using the diagnostics package.
12. https://www.nagios.org/

information is regarded as symptoms, which are fed into
a Bayesian network in order to compute the correlations
between symptoms and root causes. Both techniques for
diagnosis require structural constraints in the model to be
feasible, asking for manual assistance to the diagnosis.
Multi-robot diagnosis: Morais et al. [102], promotes an
approach for collaborative fault diagnosis using behavior
trees in an agent programming language style, namely
Rason � [102]. The approach relies on deploying an ex-
tra robot to assist a faulty robot in diagnosing a fault.
Whenever the faulty robot identifies a verdict of fault in
their behavior, the extra robot is activated to examine and
provide extra information to disambiguate the diagnostic.
For example, when a faulty robot does not identify that
there is a mechanical issue with their wheel and cannot
reach their destination (verdict), the extra robot examines their
wheel with a camera and identifies an issue. Following the
analogy, the testing team may consider the deployment of
extra robots to collect more information to assist with the
diagnostics. Swarmbug [103] is an approach for debugging
configuration bugs in swarm robotics. It abstracts the impacts
of environment configurations (e.g., obstacles) on the drones
in a swarm and automatically generates, validates, and ranks
fixes for configuration bugs.

2.10.6 Strengths

A benefit of postmortem analyses in comparison to on-the-fly
analyses is that the former, with full traces, presents better
potential to improve the explanation precision [8].

2.10.7 Weaknesses

Diagnosis may require manual effort and domain knowledge
to be effective, diagnosing without domain experience may
lead to false positives.

2.11 AR2. Use reliable tooling in order to manage field
data

2.11.1 Context (WHEN)

Maintaining the field resources is a fundamental step for the
repeatability and reliability of field tests [4]. The field data is
useful for generating field test cases and postmortem analy-
ses. Yet, the data generated before, during and after testing
must be kept and managed. Field data management often
includes storing new data, annotating data, and generating
reports. Such activities may turn intractable as the number
of trials grows along with the complexity of the stored data
(i.e., in perception systems, or learning-enabled systems).
Manually managing such data is error-prone and sometimes
unfeasible.

2.11.2 Reason (WHY)

Field testing is expensive and relying on ad hoc solutions to
storing data may result in corrupted or incomplete field data.
Unreliable tooling may be a source of flaky tests or skewed
conclusions about the system (i.e., false-positive results).

https://github.com/softsys4ai/care
http://wiki.ros.org/diagnostics
http://wiki.ros.org/diagnostics/Tutorials/Analyzing_Diagnostic_Logs
https://www.nagios.org/
https://github.com/lsa-pucrs/rason/
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2.11.3 Suggestion (WHAT)
The QA team should use reliable tools for field data
management to avoid problems with corrupted, un-
reliable, and/or incomplete data. For example, the
warehouse ros package offers both MongoDB (git: ros-
planning/warehouse ros mongo) and SQLite (git: ros-
planning/warehouse ros sqlite) database backend for
recording states, scenes, and messages. In addition, the
Field Test Tool (git: fkie/field test tool) uses the PostgreSQL
database manager extended with PostGIS for geolocalization.

2.11.4 Process (HOW)
Testers may use local workspace standard tooling aided
by git-based versioning [87] or structured database [99],
[104], and file-server [22], for field data management. On
the one hand, using local workspace tooling is intuitive
since tutorials in ROS traditionally rely on them, and most
developers are used to the workspace management tools.
On the other hand, structured approaches using database
management tools may render easier querying and means
to automatic report generation. When it comes to database
integration for persisting long-term data, Malavolta et. al
suggest using a dedicated node to interface the application
and the database system in order to mitigate performance
issues [10].

2.11.5 Exemplars

Local workspace with git support. Ortega A. et al. reports
about the maintenance of test documents and artifacts
for testing in the field [87]. The documents contain the
specification of test procedures, reports, rosbag files, incident
reports and cases in which people are detected. Test reporting
is done on an in-house tool called Technology Readiness
Level Test Report Library (TRL) and the reports are stored
in a git repository where test incidents issues. TRL is based
on the standard tooling for local workspace management in
ROS, namely wstool 13.
Database and File-server. The warehouse ros package
provides MongoDB (WRM �) and SQLite (WRS �) database
backend for persistently recording states, scenes and mes-
sages, working in conjunction with RViz and the MotionPlan-
ning plugin. The Field Test Tool (FTT �) provides support for
logging, annotating, and automatically generating reports
of field trials for autonomous ground vehicles [104]. The
tool relies on a database to store field data, which is later
accessed for automatic report generation. The authors use
PostgreSQL database manager extended with PostGIS for
geolocalization. The data is stored in the database through
an interface ROS node which collects field data (Operation
mode, GNSS positioning, local positioning, a map of the
environment, and possibly images from a camera) from
selected topics. Data collection is started and stopped in
a web server that interfaces with the tester. The web interface
can also be used to add annotations to collected field data.
In addition to FTT, the Overseer architecture [99] enables
the persistence of field data in a MySQL database, which
can be further accessed by the monitoring system Nagios.
On another stance, Hartsell et al. [22] studies ROS-based

13. http://wiki.ros.org/wstool

systems with learned-enabled components. Often, testing
such systems is prone to large dataset maintenance, which
can be a problem in the field. The author’s approach uses
a mix of file servers for storing the data and a database for
storing metadata. The file server relies on SSH File Transfer
Protocol (SFTP) to store all generated data, resulting from
the execution of a job (aka trial), results and notes from
the experiments. The metadata is persisted in a version-
controlled database for quick retrieval. As far as we are
concerned, even though Hartsell’s approach should work for
field testing it was only validated in simulation testing [22].

2.11.6 Strengths

Tool support for persisting field data helps with data relia-
bility since it is less likely that data will be lost or will be
corrupted. In addition, this guideline enables traceability of
trial execution with possible failure or fault.

2.11.7 Weaknesses

Using database systems to log long-term data may pose a
threat to the performance of the testing apparatus.
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